
C H A P T E R

3 Interpolation and Polynomial Approximation

Introduction
A census of the population of the United States is taken every 10 years. The following
table lists the population, in thousands of people, from 1950 to 2000, and the data are also
represented in the figure.

Year 1950 1960 1970 1980 1990 2000

Population 151,326 179,323 203,302 226,542 249,633 281,422
(in thousands)

P(t)

t1950

Year

Po
pu

la
tio

n

1 � 108

2 � 108

3 � 108

1960 1970 1980 1990 2000

In reviewing these data, we might ask whether they could be used to provide a rea-
sonable estimate of the population, say, in 1975 or even in the year 2020. Predictions of
this type can be obtained by using a function that fits the given data. This process is called
interpolation and is the subject of this chapter. This population problem is considered
throughout the chapter and in Exercises 18 of Section 3.1, 18 of Section 3.3, and 28 of
Section 3.5.
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106 C H A P T E R 3 Interpolation and Polynomial Approximation

3.1 Interpolation and the Lagrange Polynomial

One of the most useful and well-known classes of functions mapping the set of real numbers
into itself is the algebraic polynomials, the set of functions of the form

Pn(x) = anxn + an−1xn−1 + · · · + a1x + a0,

where n is a nonnegative integer and a0, . . . , an are real constants. One reason for their
importance is that they uniformly approximate continuous functions. By this we mean that
given any function, defined and continuous on a closed and bounded interval, there exists
a polynomial that is as “close” to the given function as desired. This result is expressed
precisely in the Weierstrass Approximation Theorem. (See Figure 3.1.)

Figure 3.1
y

xa b

y � f (x)

y � f (x) � ε

y � f (x) � ε

y � P (x)

Theorem 3.1 (Weierstrass Approximation Theorem)
Suppose that f is defined and continuous on [a, b]. For each ε > 0, there exists a polynomial
P(x), with the property that

|f (x)− P(x)| < ε, for all x in [a, b].

The proof of this theorem can be found in most elementary texts on real analysis (see,
for example, [Bart], pp. 165–172).

Another important reason for considering the class of polynomials in the approximation
of functions is that the derivative and indefinite integral of a polynomial are easy to determine
and are also polynomials. For these reasons, polynomials are often used for approximating
continuous functions.

Karl Weierstrass (1815–1897) is
often referred to as the father of
modern analysis because of his
insistence on rigor in the
demonstration of mathematical
results. He was instrumental in
developing tests for convergence
of series, and determining ways
to rigorously define irrational
numbers. He was the first to
demonstrate that a function could
be everywhere continuous but
nowhere differentiable, a result
that shocked some of his
contemporaries.

The Taylor polynomials were introduced in Section 1.1, where they were described
as one of the fundamental building blocks of numerical analysis. Given this prominence,
you might expect that polynomial interpolation would make heavy use of these functions.
However this is not the case. The Taylor polynomials agree as closely as possible with
a given function at a specific point, but they concentrate their accuracy near that point.
A good interpolation polynomial needs to provide a relatively accurate approximation
over an entire interval, and Taylor polynomials do not generally do this. For example,
suppose we calculate the first six Taylor polynomials about x0 = 0 for f (x) = ex.
Since the derivatives of f (x) are all ex, which evaluated at x0 = 0 gives 1, the Taylor
polynomials are
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3.1 Interpolation and the Lagrange Polynomial 107

P0(x) = 1, P1(x) = 1+ x, P2(x) = 1+ x + x2

2
, P3(x) = 1+ x + x2

2
+ x3

6
,

P4(x) = 1+ x + x2

2
+ x3

6
+ x4

24
, and P5(x) = 1+ x + x2

2
+ x3

6
+ x4

24
+ x5

120
.

Very little of Weierstrass’s work
was published during his lifetime,
but his lectures, particularly on
the theory of functions, had
significant influence on an entire
generation of students. The graphs of the polynomials are shown in Figure 3.2. (Notice that even for the

higher-degree polynomials, the error becomes progressively worse as we move away from
zero.)

Figure 3.2
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y � P3(x)

y � P4(x)

y � P5(x)

y � P1(x)

y � P0(x)

y � ex

Although better approximations are obtained for f (x) = ex if higher-degree Taylor
polynomials are used, this is not true for all functions. Consider, as an extreme example,
using Taylor polynomials of various degrees for f (x) = 1/x expanded about x0 = 1 to
approximate f (3) = 1/3. Since

f (x) = x−1, f ′(x) = −x−2, f ′′(x) = (−1)22 · x−3,

and, in general,

f (k)(x) = (−1)kk!x−k−1,

the Taylor polynomials are

Pn(x) =
n∑

k=0

f (k)(1)

k! (x − 1)k =
n∑

k=0

(−1)k(x − 1)k .

To approximate f (3) = 1/3 by Pn(3) for increasing values of n, we obtain the values in
Table 3.1—rather a dramatic failure! When we approximate f (3) = 1/3 by Pn(3) for larger
values of n, the approximations become increasingly inaccurate.

Table 3.1 n 0 1 2 3 4 5 6 7

Pn(3) 1 −1 3 −5 11 −21 43 −85
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108 C H A P T E R 3 Interpolation and Polynomial Approximation

For the Taylor polynomials all the information used in the approximation is concentrated
at the single number x0, so these polynomials will generally give inaccurate approximations
as we move away from x0. This limits Taylor polynomial approximation to the situation in
which approximations are needed only at numbers close to x0. For ordinary computational
purposes it is more efficient to use methods that include information at various points. We
consider this in the remainder of the chapter. The primary use of Taylor polynomials in
numerical analysis is not for approximation purposes, but for the derivation of numerical
techniques and error estimation.

Lagrange Interpolating Polynomials

The problem of determining a polynomial of degree one that passes through the distinct
points (x0, y0) and (x1, y1) is the same as approximating a function f for which f (x0) = y0

and f (x1) = y1 by means of a first-degree polynomial interpolating, or agreeing with, the
values of f at the given points. Using this polynomial for approximation within the interval
given by the endpoints is called polynomial interpolation.

Define the functions

L0(x) = x − x1

x0 − x1
and L1(x) = x − x0

x1 − x0
.

The linear Lagrange interpolating polynomial through (x0, y0) and (x1, y1) is

P(x) = L0(x)f (x0)+ L1(x)f (x1) = x − x1

x0 − x1
f (x0)+ x − x0

x1 − x0
f (x1).

Note that

L0(x0) = 1, L0(x1) = 0, L1(x0) = 0, and L1(x1) = 1,

which implies that

P(x0) = 1 · f (x0)+ 0 · f (x1) = f (x0) = y0

and

P(x1) = 0 · f (x0)+ 1 · f (x1) = f (x1) = y1.

So P is the unique polynomial of degree at most one that passes through (x0, y0) and
(x1, y1).

Example 1 Determine the linear Lagrange interpolating polynomial that passes through the points (2, 4)
and (5, 1).

Solution In this case we have

L0(x) = x − 5

2− 5
= −1

3
(x − 5) and L1(x) = x − 2

5− 2
= 1

3
(x − 2),

so

P(x) = −1

3
(x − 5) · 4+ 1

3
(x − 2) · 1 = −4

3
x + 20

3
+ 1

3
x − 2

3
= −x + 6.

The graph of y = P(x) is shown in Figure 3.3.
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3.1 Interpolation and the Lagrange Polynomial 109

Figure 3.3
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To generalize the concept of linear interpolation, consider the construction of a poly-
nomial of degree at most n that passes through the n+ 1 points

(x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn)).

(See Figure 3.4.)

Figure 3.4
y

xx0 x1 x2 xn

y � P(x)

y � f (x)

In this case we first construct, for each k = 0, 1, . . . , n, a function Ln,k(x) with the
property that Ln,k(xi) = 0 when i �= k and Ln,k(xk) = 1. To satisfy Ln,k(xi) = 0 for each
i �= k requires that the numerator of Ln,k(x) contain the term

(x − x0)(x − x1) · · · (x − xk−1)(x − xk+1) · · · (x − xn).

To satisfy Ln,k(xk) = 1, the denominator of Ln,k(x) must be this same term but evaluated at
x = xk . Thus

Ln,k(x) = (x − x0) · · · (x − xk−1)(x − xk+1) · · · (x − xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
.

A sketch of the graph of a typical Ln,k (when n is even) is shown in Figure 3.5.
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110 C H A P T E R 3 Interpolation and Polynomial Approximation

Figure 3.5

xx0 x1 xk�1 xk xk�1 xn�1 xn

Ln,k(x)

1

. . .. . .

The interpolating polynomial is easily described once the form of Ln,k is known. This
polynomial, called the nth Lagrange interpolating polynomial, is defined in the following
theorem.

The interpolation formula named
for Joseph Louis Lagrange
(1736–1813) was likely known
by Isaac Newton around 1675,
but it appears to first have been
published in 1779 by Edward
Waring (1736–1798). Lagrange
wrote extensively on the subject
of interpolation and his work had
significant influence on later
mathematicians. He published
this result in 1795.

Theorem 3.2 If x0, x1, . . . , xn are n + 1 distinct numbers and f is a function whose values are given at
these numbers, then a unique polynomial P(x) of degree at most n exists with

f (xk) = P(xk), for each k = 0, 1, . . . , n.

This polynomial is given by

P(x) = f (x0)Ln,0(x)+ · · · + f (xn)Ln,n(x) =
n∑

k=0

f (xk)Ln,k(x), (3.1)

where, for each k = 0, 1, . . . , n,

Ln,k(x) = (x − x0)(x − x1) · · · (x − xk−1)(x − xk+1) · · · (x − xn)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
(3.2)

=
n∏

i=0
i �=k

(x − xi)

(xk − xi)
.

The symbol
∏

is used to write
products compactly and parallels
the symbol

∑
, which is used for

writing sums.

We will write Ln,k(x) simply as Lk(x) when there is no confusion as to its degree.

Example 2 (a) Use the numbers (called nodes) x0 = 2, x1 = 2.75, and x2 = 4 to find the second
Lagrange interpolating polynomial for f (x) = 1/x.

(b) Use this polynomial to approximate f (3) = 1/3.

Solution (a) We first determine the coefficient polynomials L0(x), L1(x), and L2(x). In
nested form they are

L0(x) = (x − 2.75)(x − 4)

(2− 2.5)(2− 4)
= 2

3
(x − 2.75)(x − 4),

L1(x) = (x − 2)(x − 4)

(2.75− 2)(2.75− 4)
= −16

15
(x − 2)(x − 4),

and

L2(x) = (x − 2)(x − 2.75)

(4− 2)(4− 2.5)
= 2

5
(x − 2)(x − 2.75).
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3.1 Interpolation and the Lagrange Polynomial 111

Also, f (x0) = f (2) = 1/2, f (x1) = f (2.75) = 4/11, and f (x2) = f (4) = 1/4, so

P(x) =
2∑

k=0

f (xk)Lk(x)

= 1

3
(x − 2.75)(x − 4)− 64

165
(x − 2)(x − 4)+ 1

10
(x − 2)(x − 2.75)

= 1

22
x2 − 35

88
x + 49

44
.

(b) An approximation to f (3) = 1/3 (see Figure 3.6) is

f (3) ≈ P(3) = 9

22
− 105

88
+ 49

44
= 29

88
≈ 0.32955.

Recall that in the opening section of this chapter (see Table 3.1) we found that no Taylor
polynomial expanded about x0 = 1 could be used to reasonably approximate f (x) = 1/x
at x = 3.

Figure 3.6
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The interpolating polynomial P of degree less than or equal to 3 is defined in Maple
with

P := x→ interp([2, 11/4, 4], [1/2, 4/11, 1/4], x)

x→ interp

([
2,

11

4
, 4

]
,

[
1

2
,

4

11
,

1

4

]
, x

)

To see the polynomial, enter

P(x)

1

22
x2 − 35

88
x + 49

44

Evaluating P(3) as an approximation to f (3) = 1/3, is found with

evalf(P(3))

0.3295454545
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112 C H A P T E R 3 Interpolation and Polynomial Approximation

The interpolating polynomial can also be defined in Maple using the CurveFitting package
and the call PolynomialInterpolation.

The next step is to calculate a remainder term or bound for the error involved in
approximating a function by an interpolating polynomial.

Theorem 3.3 Suppose x0, x1, . . . , xn are distinct numbers in the interval [a, b] and f ∈ Cn+1[a, b]. Then,
for each x in [a, b], a number ξ(x) (generally unknown) between x0, x1, . . . , xn, and hence
in (a, b), exists with

f (x) = P(x)+ f
(n+1)(ξ(x))

(n+ 1)! (x − x0)(x − x1) · · · (x − xn), (3.3)

where P(x) is the interpolating polynomial given in Eq. (3.1).There are other ways that the
error term for the Lagrange
polynomial can be expressed, but
this is the most useful form and
the one that most closely agrees
with the standard Taylor
polynomial error form.

Proof Note first that if x = xk , for any k = 0, 1, . . . , n, then f (xk) = P(xk), and choosing
ξ(xk) arbitrarily in (a, b) yields Eq. (3.3).

If x �= xk , for all k = 0, 1, . . . , n, define the function g for t in [a, b] by

g(t) = f (t)− P(t)− [f (x)− P(x)] (t − x0)(t − x1) · · · (t − xn)

(x − x0)(x − x1) · · · (x − xn)

= f (t)− P(t)− [f (x)− P(x)]
n∏

i=0

(t − xi)

(x − xi)
.

Since f ∈ Cn+1[a, b], and P ∈ C∞[a, b], it follows that g ∈ Cn+1[a, b]. For t = xk , we have

g(xk) = f (xk)− P(xk)− [f (x)− P(x)]
n∏

i=0

(xk − xi)

(x − xi)
= 0− [f (x)− P(x)] · 0 = 0.

Moreover,

g(x) = f (x)− P(x)− [f (x)− P(x)]
n∏

i=0

(x − xi)

(x − xi)
= f (x)− P(x)− [f (x)− P(x)] = 0.

Thus g ∈ Cn+1[a, b], and g is zero at the n + 2 distinct numbers x, x0, x1, . . . , xn. By
Generalized Rolle’s Theorem 1.10, there exists a number ξ in (a, b) for which g(n+1)(ξ) = 0.
So

0= g(n+1)(ξ)= f (n+1)(ξ)−P(n+1)(ξ)−[f (x)−P(x)] d
n+1

dtn+1

[
n∏

i=0

(t− xi)

(x− xi)

]
t=ξ

. (3.4)

However P(x) is a polynomial of degree at most n, so the (n+1)st derivative, P(n+1)(x),
is identically zero. Also,

∏n
i=0[(t − xi)/(x − xi)] is a polynomial of degree (n+ 1), so

n∏
i=0

(t − xi)

(x − xi)
=
[

1∏n
i=0(x − xi)

]
tn+1 + (lower-degree terms in t),

and

dn+1

dtn+1

n∏
i=0

(t − xi)

(x − xi)
= (n+ 1)!∏n

i=0(x − xi)
.
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3.1 Interpolation and the Lagrange Polynomial 113

Equation (3.4) now becomes

0 = f (n+1)(ξ)− 0− [f (x)− P(x)] (n+ 1)!∏n
i=0(x − xi)

,

and, upon solving for f (x), we have

f (x) = P(x)+ f
(n+1)(ξ)

(n+ 1)!
n∏

i=0

(x − xi).

The error formula in Theorem 3.3 is an important theoretical result because Lagrange
polynomials are used extensively for deriving numerical differentiation and integration
methods. Error bounds for these techniques are obtained from the Lagrange error formula.

Note that the error form for the Lagrange polynomial is quite similar to that for the Tay-
lor polynomial. The nth Taylor polynomial about x0 concentrates all the known information
at x0 and has an error term of the form

f (n+1)(ξ(x))

(n+ 1)! (x − x0)
n+1.

The Lagrange polynomial of degree n uses information at the distinct numbers x0, x1, . . . ,
xn and, in place of (x − x0)

n, its error formula uses a product of the n + 1 terms (x − x0),
(x − x1), . . . , (x − xn):

f (n+1)(ξ(x))

(n+ 1)! (x − x0)(x − x1) · · · (x − xn).

Example 3 In Example 2 we found the second Lagrange polynomial for f (x) = 1/x on [2, 4] using the
nodes x0 = 2, x1 = 2.75, and x2 = 4. Determine the error form for this polynomial, and
the maximum error when the polynomial is used to approximate f (x) for x ε [2, 4].
Solution Because f (x) = x−1, we have

f ′(x) = −x−2, f ′′(x) = 2x−3, and f ′′′(x) = −6x−4.

As a consequence, the second Lagrange polynomial has the error form

f ′′′(ξ(x))
3! (x−x0)(x−x1)(x−x2) = −(ξ(x))−4(x−2)(x−2.75)(x−4), for ξ(x) in (2, 4).

The maximum value of (ξ(x))−4 on the interval is 2−4 = 1/16. We now need to determine
the maximum value on this interval of the absolute value of the polynomial

g(x) = (x − 2)(x − 2.75)(x − 4) = x3 − 35

4
x2 + 49

2
x − 22.

Because

Dx

(
x3 − 35

4
x2 + 49

2
x − 22

)
= 3x2 − 35

2
x + 49

2
= 1

2
(3x − 7)(2x − 7),

the critical points occur at

x = 7

3
, with g

(
7

3

)
= 25

108
, and x = 7

2
, with g

(
7

2

)
= − 9

16
.

Hence, the maximum error is

f ′′′(ξ(x))
3! |(x − x0)(x − x1)(x − x2)| ≤ 1

16 · 6
∣∣∣∣− 9

16

∣∣∣∣ = 3

512
≈ 0.00586.
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The next example illustrates how the error formula can be used to prepare a table of
data that will ensure a specified interpolation error within a specified bound.

Example 4 Suppose a table is to be prepared for the function f (x) = ex, for x in [0, 1]. Assume the
number of decimal places to be given per entry is d ≥ 8 and that the difference between
adjacent x-values, the step size, is h. What step size h will ensure that linear interpolation
gives an absolute error of at most 10−6 for all x in [0, 1]?
Solution Let x0, x1, . . . be the numbers at which f is evaluated, x be in [0,1], and suppose
j satisfies xj ≤ x ≤ xj+1. Eq. (3.3) implies that the error in linear interpolation is

|f (x)− P(x)| =
∣∣∣∣f (2)(ξ)2! (x − xj)(x − xj+1)

∣∣∣∣ = |f (2)(ξ)|2
|(x − xj)||(x − xj+1)|.

The step size is h, so xj = jh, xj+1 = (j + 1)h, and

|f (x)− P(x)| ≤ |f
(2)(ξ)|
2! |(x − jh)(x − (j + 1)h)|.

Hence

|f (x)− P(x)| ≤ maxξ∈[0,1] eξ

2
max

xj≤x≤xj+1
|(x − jh)(x − (j + 1)h)|

≤ e

2
max

xj≤x≤xj+1
|(x − jh)(x − (j + 1)h)|.

Consider the function g(x) = (x − jh)(x − (j + 1)h), for jh ≤ x ≤ (j + 1)h. Because

g′(x) = (x − (j + 1)h)+ (x − jh) = 2

(
x − jh− h

2

)
,

the only critical point for g is at x = jh+ h/2, with g(jh+ h/2) = (h/2)2 = h2/4.
Since g(jh) = 0 and g((j + 1)h) = 0, the maximum value of |g′(x)| in [jh, (j + 1)h]

must occur at the critical point which implies that

|f (x)− P(x)| ≤ e

2
max

xj≤x≤xj+1
|g(x)| ≤ e

2
· h2

4
= eh2

8
.

Consequently, to ensure that the the error in linear interpolation is bounded by 10−6, it is
sufficient for h to be chosen so that

eh2

8
≤ 10−6. This implies that h < 1.72× 10−3.

Because n = (1 − 0)/h must be an integer, a reasonable choice for the step size is
h = 0.001.

E X E R C I S E S E T 3.1

1. For the given functions f (x), let x0 = 0, x1 = 0.6, and x2 = 0.9. Construct interpolation polynomials
of degree at most one and at most two to approximate f (0.45), and find the absolute error.

a. f (x) = cos x

b. f (x) = √1+ x

c. f (x) = ln(x + 1)

d. f (x) = tan x
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3.1 Interpolation and the Lagrange Polynomial 115

2. For the given functions f (x), let x0 = 1, x1 = 1.25, and x2 = 1.6. Construct interpolation polynomials
of degree at most one and at most two to approximate f (1.4), and find the absolute error.
a. f (x) = sin πx

b. f (x) = 3
√

x − 1

c. f (x) = log10(3x − 1)

d. f (x) = e2x − x

3. Use Theorem 3.3 to find an error bound for the approximations in Exercise 1.

4. Use Theorem 3.3 to find an error bound for the approximations in Exercise 2.

5. Use appropriate Lagrange interpolating polynomials of degrees one, two, and three to approximate
each of the following:

a. f (8.4) if f (8.1) = 16.94410, f (8.3) = 17.56492, f (8.6) = 18.50515, f (8.7) = 18.82091

b. f
(− 1

3

)
if f (−0.75) = −0.07181250, f (−0.5) = −0.02475000, f (−0.25) = 0.33493750,

f (0) = 1.10100000

c. f (0.25) if f (0.1) = 0.62049958, f (0.2) = −0.28398668, f (0.3) = 0.00660095, f (0.4) =
0.24842440

d. f (0.9) if f (0.6) = −0.17694460, f (0.7) = 0.01375227, f (0.8) = 0.22363362, f (1.0) =
0.65809197

6. Use appropriate Lagrange interpolating polynomials of degrees one, two, and three to approximate
each of the following:

a. f (0.43) if f (0) = 1, f (0.25) = 1.64872, f (0.5) = 2.71828, f (0.75) = 4.48169

b. f (0) if f (−0.5) = 1.93750, f (−0.25) = 1.33203, f (0.25) = 0.800781, f (0.5) = 0.687500

c. f (0.18) if f (0.1) = −0.29004986, f (0.2) = −0.56079734, f (0.3) = −0.81401972, f (0.4) =
−1.0526302

d. f (0.25) if f (−1) = 0.86199480, f (−0.5) = 0.95802009, f (0) = 1.0986123, f (0.5) =
1.2943767

7. The data for Exercise 5 were generated using the following functions. Use the error formula to find a
bound for the error, and compare the bound to the actual error for the cases n = 1 and n = 2.

a. f (x) = x ln x

b. f (x) = x3 + 4.001x2 + 4.002x + 1.101

c. f (x) = x cos x − 2x2 + 3x − 1

d. f (x) = sin(ex − 2)

8. The data for Exercise 6 were generated using the following functions. Use the error formula to find a
bound for the error, and compare the bound to the actual error for the cases n = 1 and n = 2.

a. f (x) = e2x

b. f (x) = x4 − x3 + x2 − x + 1

c. f (x) = x2 cos x − 3x

d. f (x) = ln(ex + 2)

9. Let P3(x) be the interpolating polynomial for the data (0, 0), (0.5, y), (1, 3), and (2, 2). The coefficient
of x3 in P3(x) is 6. Find y.

10. Let f (x) = √x − x2 and P2(x) be the interpolation polynomial on x0 = 0, x1 and x2 = 1. Find the
largest value of x1 in (0, 1) for which f (0.5)− P2(0.5) = −0.25.

11. Use the following values and four-digit rounding arithmetic to construct a third Lagrange polyno-
mial approximation to f (1.09). The function being approximated is f (x) = log10(tan x). Use this
knowledge to find a bound for the error in the approximation.

f (1.00) = 0.1924 f (1.05) = 0.2414 f (1.10) = 0.2933 f (1.15) = 0.3492

12. Use the Lagrange interpolating polynomial of degree three or less and four-digit chopping arithmetic
to approximate cos 0.750 using the following values. Find an error bound for the approximation.

cos 0.698 = 0.7661 cos 0.733 = 0.7432 cos 0.768 = 0.7193 cos 0.803 = 0.6946

The actual value of cos 0.750 is 0.7317 (to four decimal places). Explain the discrepancy between the
actual error and the error bound.
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13. Construct the Lagrange interpolating polynomials for the following functions, and find a bound for
the absolute error on the interval [x0, xn].
a. f (x) = e2x cos 3x, x0 = 0, x1 = 0.3, x2 = 0.6, n = 2

b. f (x) = sin(ln x), x0 = 2.0, x1 = 2.4, x2 = 2.6, n = 2

c. f (x) = ln x, x0 = 1, x1 = 1.1, x2 = 1.3, x3 = 1.4, n = 3

d. f (x) = cos x + sin x, x0 = 0, x1 = 0.25, x2 = 0.5, x3 = 1.0, n = 3

14. Let f (x) = ex , for 0 ≤ x ≤ 2.

a. Approximate f (0.25) using linear interpolation with x0 = 0 and x1 = 0.5.

b. Approximate f (0.75) using linear interpolation with x0 = 0.5 and x1 = 1.

c. Approximate f (0.25) and f (0.75) by using the second interpolating polynomial with x0 = 0,
x1 = 1, and x2 = 2.

d. Which approximations are better and why?

15. Repeat Exercise 11 using Maple with Digits set to 10.

16. Repeat Exercise 12 using Maple with Digits set to 10.

17. Suppose you need to construct eight-decimal-place tables for the common, or base-10, logarithm
function from x = 1 to x = 10 in such a way that linear interpolation is accurate to within 10−6.
Determine a bound for the step size for this table. What choice of step size would you make to ensure
that x = 10 is included in the table?

18. a. The introduction to this chapter included a table listing the population of the United States from
1950 to 2000. Use Lagrange interpolation to approximate the population in the years 1940, 1975,
and 2020.

b. The population in 1940 was approximately 132,165,000. How accurate do you think your 1975
and 2020 figures are?

19. It is suspected that the high amounts of tannin in mature oak leaves inhibit the growth of the winter
moth (Operophtera bromata L., Geometridae) larvae that extensively damage these trees in certain
years. The following table lists the average weight of two samples of larvae at times in the first 28
days after birth. The first sample was reared on young oak leaves, whereas the second sample was
reared on mature leaves from the same tree.

a. Use Lagrange interpolation to approximate the average weight curve for each sample.

b. Find an approximate maximum average weight for each sample by determining the maximum
of the interpolating polynomial.

Day 0 6 10 13 17 20 28

Sample 1 average weight (mg) 6.67 17.33 42.67 37.33 30.10 29.31 28.74
Sample 2 average weight (mg) 6.67 16.11 18.89 15.00 10.56 9.44 8.89

20. In Exercise 26 of Section 1.1 a Maclaurin series was integrated to approximate erf(1), where erf(x) is
the normal distribution error function defined by

erf(x) = 2√
π

∫ x

0
e−t2

dt.

a. Use the Maclaurin series to construct a table for erf(x) that is accurate to within 10−4 for erf(xi),
where xi = 0.2i, for i = 0, 1, . . . , 5.

b. Use both linear interpolation and quadratic interpolation to obtain an approximation to erf( 1
3 ).

Which approach seems most feasible?

21. Prove Taylor’s Theorem 1.14 by following the procedure in the proof of Theorem 3.3. [Hint: Let

g(t) = f (t)− P(t)− [f (x)− P(x)] · (t − x0)
n+1

(x − x0)n+1
,

where P is the nth Taylor polynomial, and use the Generalized Rolle’s Theorem 1.10.]
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22. Show that max
xj≤x≤xj+1

|g(x)| = h2/4, where g(x) = (x − jh)(x − (j + 1)h).

23. The Bernstein polynomial of degree n for f ∈ C[0, 1] is given by

Bn(x) =
n∑

k=0

(
n

k

)
f

(
k

n

)
xk(1− x)n−k ,

where
( n

k

)
denotes n!/k!(n − k)!. These polynomials can be used in a constructive proof of the

Weierstrass Approximation Theorem 3.1 (see [Bart]) because lim
n→∞Bn(x) = f (x), for each x ∈ [0, 1].

a. Find B3(x) for the functions
i. f (x) = x ii. f (x) = 1

b. Show that for each k ≤ n, (
n− 1

k − 1

)
=
(

k

n

)(
n

k

)
.

c. Use part (b) and the fact, from (ii) in part (a), that

1 =
n∑

k=0

(
n

k

)
xk(1− x)n−k , for each n,

to show that, for f (x) = x2,

Bn(x) =
(

n− 1

n

)
x2 + 1

n
x.

d. Use part (c) to estimate the value of n necessary for
∣∣Bn(x)− x2

∣∣ ≤ 10−6 to hold for all x in
[0, 1].

3.2 Data Approximation and Neville’s Method

In the previous section we found an explicit representation for Lagrange polynomials and
their error when approximating a function on an interval. A frequent use of these polynomials
involves the interpolation of tabulated data. In this case an explicit representation of the
polynomial might not be needed, only the values of the polynomial at specified points. In
this situation the function underlying the data might not be known so the explicit form of
the error cannot be used. We will now illustrate a practical application of interpolation in
such a situation.

Illustration Table 3.2 lists values of a function f at various points. The approximations to f (1.5)
obtained by various Lagrange polynomials that use this data will be compared to try and
determine the accuracy of the approximation.

Table 3.2

x f (x)

1.0 0.7651977
1.3 0.6200860
1.6 0.4554022
1.9 0.2818186
2.2 0.1103623

The most appropriate linear polynomial uses x0 = 1.3 and x1 = 1.6 because 1.5 is between
1.3 and 1.6. The value of the interpolating polynomial at 1.5 is

P1(1.5) = (1.5− 1.6)

(1.3− 1.6)
f (1.3)+ (1.5− 1.3)

(1.6− 1.3)
f (1.6)

= (1.5− 1.6)

(1.3− 1.6)
(0.6200860)+ (1.5− 1.3)

(1.6− 1.3)
(0.4554022) = 0.5102968.

Two polynomials of degree 2 can reasonably be used, one with x0 = 1.3, x1 = 1.6, and
x2 = 1.9, which gives
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P2(1.5) = (1.5− 1.6)(1.5− 1.9)

(1.3− 1.6)(1.3− 1.9)
(0.6200860)+ (1.5− 1.3)(1.5− 1.9)

(1.6− 1.3)(1.6− 1.9)
(0.4554022)

+ (1.5− 1.3)(1.5− 1.6)

(1.9− 1.3)(1.9− 1.6)
(0.2818186) = 0.5112857,

and one with x0 = 1.0, x1 = 1.3, and x2 = 1.6, which gives P̂2(1.5) = 0.5124715.
In the third-degree case, there are also two reasonable choices for the polynomial. One

with x0 = 1.3, x1 = 1.6, x2 = 1.9, and x3 = 2.2, which gives P3(1.5) = 0.5118302.
The second third-degree approximation is obtained with x0 = 1.0, x1 = 1.3, x2 = 1.6,

and x3 = 1.9, which gives P̂3(1.5) = 0.5118127. The fourth-degree Lagrange polynomial
uses all the entries in the table. With x0 = 1.0, x1 = 1.3, x2 = 1.6, x3 = 1.9, and x4 = 2.2,
the approximation is P4(1.5) = 0.5118200.

Because P3(1.5), P̂3(1.5), and P4(1.5) all agree to within 2 × 10−5 units, we expect
this degree of accuracy for these approximations. We also expect P4(1.5) to be the most
accurate approximation, since it uses more of the given data.

The function we are approximating is actually the Bessel function of the first kind of
order zero, whose value at 1.5 is known to be 0.5118277. Therefore, the true accuracies of
the approximations are as follows:

|P1(1.5)− f (1.5)| ≈ 1.53× 10−3,

|P2(1.5)− f (1.5)| ≈ 5.42× 10−4,

|P̂2(1.5)− f (1.5)| ≈ 6.44× 10−4,

|P3(1.5)− f (1.5)| ≈ 2.5× 10−6,

|P̂3(1.5)− f (1.5)| ≈ 1.50× 10−5,

|P4(1.5)− f (1.5)| ≈ 7.7× 10−6.

Although P3(1.5) is the most accurate approximation, if we had no knowledge of the actual
value of f (1.5), we would accept P4(1.5) as the best approximation since it includes the
most data about the function. The Lagrange error term derived in Theorem 3.3 cannot be
applied here because we have no knowledge of the fourth derivative of f . Unfortunately,
this is generally the case. �

Neville’s Method

A practical difficulty with Lagrange interpolation is that the error term is difficult to apply,
so the degree of the polynomial needed for the desired accuracy is generally not known
until computations have been performed. A common practice is to compute the results
given from various polynomials until appropriate agreement is obtained, as was done in
the previous Illustration. However, the work done in calculating the approximation by the
second polynomial does not lessen the work needed to calculate the third approximation;
nor is the fourth approximation easier to obtain once the third approximation is known,
and so on. We will now derive these approximating polynomials in a manner that uses the
previous calculations to greater advantage.

Definition 3.4 Let f be a function defined at x0, x1, x2, . . . , xn, and suppose that m1, m2, . . ., mk are k
distinct integers, with 0 ≤ mi ≤ n for each i. The Lagrange polynomial that agrees with
f (x) at the k points xm1 , xm2 , . . . , xmk is denoted Pm1,m2,...,mk (x).

Example 1 Suppose that x0 = 1, x1 = 2, x2 = 3, x3 = 4, x4 = 6, and f (x) = ex. Determine the
interpolating polynomial denoted P1,2,4(x), and use this polynomial to approximate f (5).
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Solution This is the Lagrange polynomial that agrees with f (x) at x1 = 2, x2 = 3, and
x4 = 6. Hence

P1,2,4(x) = (x − 3)(x − 6)

(2− 3)(2− 6)
e2 + (x − 2)(x − 6)

(3− 2)(3− 6)
e3 + (x − 2)(x − 3)

(6− 2)(6− 3)
e6.

So

f (5) ≈ P(5) = (5− 3)(5− 6)

(2− 3)(2− 6)
e2 + (5− 2)(5− 6)

(3− 2)(3− 6)
e3 + (5− 2)(5− 3)

(6− 2)(6− 3)
e6

=− 1

2
e2 + e3 + 1

2
e6 ≈ 218.105.

The next result describes a method for recursively generating Lagrange polynomial
approximations.

Theorem 3.5 Let f be defined at x0, x1, . . . , xk , and let xj and xi be two distinct numbers in this set. Then

P(x) = (x − xj)P0,1,...,j−1,j+1,...,k(x)− (x − xi)P0,1,...,i−1,i+1,...,k(x)

(xi − xj)

is the kth Lagrange polynomial that interpolates f at the k + 1 points x0, x1, . . . , xk .

Proof For ease of notation, let Q ≡ P0,1,...,i−1,i+1,...,k and Q̂ ≡ P0,1,...,j−1,j+1,...,k . Since Q(x)
and Q̂(x) are polynomials of degree k − 1 or less, P(x) is of degree at most k.

First note that Q̂(xi) = f (xi), implies that

P(xi) = (xi − xj)Q̂(xi)− (xi − xi)Q(xi)

xi − xj
= (xi − xj)

(xi − xj)
f (xi) = f (xi).

Similarly, since Q(xj) = f (xj), we have P(xj) = f (xj).
In addition, if 0 ≤ r ≤ k and r is neither i nor j, then Q(xr) = Q̂(xr) = f (xr). So

P(xr) = (xr − xj)Q̂(xr)− (xr − xi)Q(xr)

xi − xj
= (xi − xj)

(xi − xj)
f (xr) = f (xr).

But, by definition, P0,1,...,k(x) is the unique polynomial of degree at most k that agrees with
f at x0, x1, . . . , xk . Thus, P ≡ P0,1,...,k .

Theorem 3.5 implies that the interpolating polynomials can be generated recursively.
For example, we have

P0,1 = 1

x1 − x0
[(x − x0)P1 − (x − x1)P0], P1,2 = 1

x2 − x1
[(x − x1)P2 − (x − x2)P1],

P0,1,2 = 1

x2 − x0
[(x − x0)P1,2 − (x − x2)P0,1],

and so on. They are generated in the manner shown in Table 3.3, where each row is completed
before the succeeding rows are begun.
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Table 3.3 x0 P0

x1 P1 P0,1

x2 P2 P1,2 P0,1,2

x3 P3 P2,3 P1,2,3 P0,1,2,3

x4 P4 P3,4 P2,3,4 P1,2,3,4 P0,1,2,3,4

The procedure that uses the result of Theorem 3.5 to recursively generate interpolating
polynomial approximations is called Neville’s method. The P notation used in Table 3.3
is cumbersome because of the number of subscripts used to represent the entries. Note,
however, that as an array is being constructed, only two subscripts are needed. Proceeding
down the table corresponds to using consecutive points xi with larger i, and proceeding to
the right corresponds to increasing the degree of the interpolating polynomial. Since the
points appear consecutively in each entry, we need to describe only a starting point and the
number of additional points used in constructing the approximation.

Eric Harold Neville (1889–1961)
gave this modification of the
Lagrange formula in a paper
published in 1932.[N]

To avoid the multiple subscripts, we let Qi,j(x), for 0 ≤ j ≤ i, denote the interpolating
polynomial of degree j on the (j + 1) numbers xi−j, xi−j+1, . . . , xi−1, xi; that is,

Qi,j = Pi−j,i−j+1,...,i−1,i.

Using this notation provides the Q notation array in Table 3.4.

Table 3.4 x0 P0 = Q0,0

x1 P1 = Q1,0 P0,1 = Q1,1

x2 P2 = Q2,0 P1,2 = Q2,1 P0,1,2 = Q2,2

x3 P3 = Q3,0 P2,3 = Q3,1 P1,2,3 = Q3,2 P0,1,2,3 = Q3,3

x4 P4 = Q4,0 P3,4 = Q4,1 P2,3,4 = Q4,2 P1,2,3,4 = Q4,3 P0,1,2,3,4 = Q4,4

Example 2 Values of various interpolating polynomials at x = 1.5 were obtained in the Illustration at
the beginning of the Section using the data shown in Table 3.5. Apply Neville’s method to
the data by constructing a recursive table of the form shown in Table 3.4.

Table 3.5

x f (x)

1.0 0.7651977
1.3 0.6200860
1.6 0.4554022
1.9 0.2818186
2.2 0.1103623

Solution Let x0 = 1.0, x1 = 1.3, x2 = 1.6, x3 = 1.9, and x4 = 2.2, then Q0,0 = f (1.0),
Q1,0 = f (1.3), Q2,0 = f (1.6), Q3,0 = f (1.9), and Q4,0 = f (2.2). These are the five
polynomials of degree zero (constants) that approximate f (1.5), and are the same as data
given in Table 3.5.

Calculating the first-degree approximation Q1,1(1.5) gives

Q1,1(1.5) = (x − x0)Q1,0 − (x − x1)Q0,0

x1 − x0

= (1.5− 1.0)Q1,0 − (1.5− 1.3)Q0,0

1.3− 1.0

= 0.5(0.6200860)− 0.2(0.7651977)

0.3
= 0.5233449.

Similarly,

Q2,1(1.5) = (1.5− 1.3)(0.4554022)− (1.5− 1.6)(0.6200860)

1.6− 1.3
= 0.5102968,

Q3,1(1.5) = 0.5132634, and Q4,1(1.5) = 0.5104270.
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The best linear approximation is expected to be Q2,1 because 1.5 is between x1 = 1.3
and x2 = 1.6.

In a similar manner, approximations using higher-degree polynomials are given by

Q2,2(1.5) = (1.5− 1.0)(0.5102968)− (1.5− 1.6)(0.5233449)

1.6− 1.0
= 0.5124715,

Q3,2(1.5) = 0.5112857, and Q4,2(1.5) = 0.5137361.

The higher-degree approximations are generated in a similar manner and are shown in
Table 3.6.

Table 3.6 1.0 0.7651977
1.3 0.6200860 0.5233449
1.6 0.4554022 0.5102968 0.5124715
1.9 0.2818186 0.5132634 0.5112857 0.5118127
2.2 0.1103623 0.5104270 0.5137361 0.5118302 0.5118200

If the latest approximation, Q4,4, was not sufficiently accurate, another node, x5, could
be selected, and another row added to the table:

x5 Q5,0 Q5,1 Q5,2 Q5,3 Q5,4 Q5,5.

Then Q4,4, Q5,4, and Q5,5 could be compared to determine further accuracy.
The function in Example 2 is the Bessel function of the first kind of order zero, whose

value at 2.5 is −0.0483838, and the next row of approximations to f (1.5) is

2.5 − 0.0483838 0.4807699 0.5301984 0.5119070 0.5118430 0.5118277.

The final new entry, 0.5118277, is correct to all seven decimal places.
The NumericalAnalysis package in Maple can be used to apply Neville’s method for

the values of x and f (x) = y in Table 3.6. After loading the package we define the data
with

xy := [[1.0, 0.7651977], [1.3, 0.6200860], [1.6, 0.4554022], [1.9, 0.2818186]]
Neville’s method using this data gives the approximation at x = 1.5 with the command

p3 := PolynomialInterpolation(xy, method = neville, extrapolate = [1.5])
The output from Maple for this command is

POLYINTERP([[1.0, 0.7651977], [1.3, 0.6200860], [1.6, 0.4554022], [1.9, 0.2818186]],
method = neville, extrapolate = [1.5], INFO)

which isn’t very informative. To display the information, we enter the command

NevilleTable(p3, 1.5)

and Maple returns an array with four rows and four columns. The nonzero entries corre-
sponding to the top four rows of Table 3.6 (with the first column deleted), the zero entries
are simply used to fill up the array.

To add the additional row to the table using the additional data (2.2, 0.1103623) we
use the command
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p3a := AddPoint(p3, [2.2, 0.1103623])
and a new array with all the approximation entries in Table 3.6 is obtained with

NevilleTable(p3a, 1.5)

Example 3 Table 3.7 lists the values of f (x) = ln x accurate to the places given. Use Neville’s method
and four-digit rounding arithmetic to approximatef (2.1) = ln 2.1 by completing the Neville
table.Table 3.7

i xi ln xi

0 2.0 0.6931
1 2.2 0.7885
2 2.3 0.8329

Solution Because x − x0 = 0.1, x − x1 = −0.1, x − x2 = −0.2, and we are given
Q0,0 = 0.6931, Q1,0 = 0.7885, and Q2,0 = 0.8329, we have

Q1,1 = 1

0.2
[(0.1)0.7885− (−0.1)0.6931] = 0.1482

0.2
= 0.7410

and

Q2,1 = 1

0.1
[(−0.1)0.8329− (−0.2)0.7885] = 0.07441

0.1
= 0.7441.

The final approximation we can obtain from this data is

Q2,1 = 1

0.3
[(0.1)0.7441− (−0.2)0.7410] = 0.2276

0.3
= 0.7420.

These values are shown in Table 3.8.

Table 3.8 i xi x − xi Qi0 Qi1 Qi2

0 2.0 0.1 0.6931
1 2.2 −0.1 0.7885 0.7410
2 2.3 −0.2 0.8329 0.7441 0.7420

In the preceding example we have f (2.1) = ln 2.1 = 0.7419 to four decimal places,
so the absolute error is

|f (2.1)− P2(2.1)| = |0.7419− 0.7420| = 10−4.

However, f ′(x) = 1/x, f ′′(x) = −1/x2, and f ′′′(x) = 2/x3, so the Lagrange error formula
(3.3) in Theorem 3.3 gives the error bound

|f (2.1)− P2(2.1)| =
∣∣∣∣f ′′′(ξ(2.1))

3! (x − x0)(x − x1)(x − x2)

∣∣∣∣
=
∣∣∣∣ 1

3 (ξ(2.1))3
(0.1)(−0.1)(−0.2)

∣∣∣∣ ≤ 0.002

3(2)3
= 8.3× 10−5.

Notice that the actual error, 10−4, exceeds the error bound, 8.3× 10−5. This apparent
contradiction is a consequence of finite-digit computations. We used four-digit rounding
arithmetic, and the Lagrange error formula (3.3) assumes infinite-digit arithmetic. This
caused our actual errors to exceed the theoretical error estimate.

• Remember: You cannot expect more accuracy than the arithmetic provides.

Algorithm 3.1 constructs the entries in Neville’s method by rows.
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3.2 Data Approximation and Neville’s Method 123

ALGORITHM

3.1
Neville’s Iterated Interpolation

To evaluate the interpolating polynomial P on the n+ 1 distinct numbers x0, . . . , xn at the
number x for the function f :

INPUT numbers x, x0, x1, . . . , xn; values f (x0), f (x1), . . . , f (xn) as the first column
Q0,0, Q1,0, . . . , Qn,0 of Q.

OUTPUT the table Q with P(x) = Qn,n.

Step 1 For i = 1, 2, . . . , n
for j = 1, 2, . . . , i

set Qi,j = (x − xi−j)Qi, j−1 − (x − xi)Qi−1, j−1

xi − xi−j
.

Step 2 OUTPUT (Q);
STOP.

The algorithm can be modified to allow for the addition of new interpolating nodes.
For example, the inequality

|Qi,i − Qi−1,i−1| < ε

can be used as a stopping criterion, where ε is a prescribed error tolerance. If the inequality is
true, Qi,i is a reasonable approximation to f (x). If the inequality is false, a new interpolation
point, xi+1, is added.

E X E R C I S E S E T 3.2

1. Use Neville’s method to obtain the approximations for Lagrange interpolating polynomials of degrees
one, two, and three to approximate each of the following:

a. f (8.4) if f (8.1) = 16.94410, f (8.3) = 17.56492, f (8.6) = 18.50515, f (8.7) = 18.82091

b. f
(− 1

3

)
if f (−0.75) = −0.07181250, f (−0.5) = −0.02475000, f (−0.25) = 0.33493750,

f (0) = 1.10100000

c. f (0.25) if f (0.1) = 0.62049958, f (0.2) = −0.28398668, f (0.3) = 0.00660095, f (0.4) =
0.24842440

d. f (0.9) if f (0.6) = −0.17694460, f (0.7) = 0.01375227, f (0.8) = 0.22363362, f (1.0) =
0.65809197

2. Use Neville’s method to obtain the approximations for Lagrange interpolating polynomials of degrees
one, two, and three to approximate each of the following:

a. f (0.43) if f (0) = 1, f (0.25) = 1.64872, f (0.5) = 2.71828, f (0.75) = 4.48169

b. f (0) if f (−0.5) = 1.93750, f (−0.25) = 1.33203, f (0.25) = 0.800781, f (0.5) = 0.687500

c. f (0.18) if f (0.1) = −0.29004986, f (0.2) = −0.56079734, f (0.3) = −0.81401972, f (0.4) =
−1.0526302

d. f (0.25) if f (−1) = 0.86199480, f (−0.5) = 0.95802009, f (0) = 1.0986123, f (0.5) =
1.2943767

3. Use Neville’s method to approximate
√

3 with the following functions and values.

a. f (x) = 3x and the values x0 = −2, x1 = −1, x2 = 0, x3 = 1, and x4 = 2.

b. f (x) = √x and the values x0 = 0, x1 = 1, x2 = 2, x3 = 4, and x4 = 5.

c. Compare the accuracy of the approximation in parts (a) and (b).

4. Let P3(x) be the interpolating polynomial for the data (0, 0), (0.5, y), (1, 3), and (2, 2). Use Neville’s
method to find y if P3(1.5) = 0.
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5. Neville’s method is used to approximate f (0.4), giving the following table.

x0 = 0 P0 = 1
x1 = 0.25 P1 = 2 P01 = 2.6
x2 = 0.5 P2 P1,2 P0,1,2

x3 = 0.75 P3 = 8 P2,3 = 2.4 P1,2,3 = 2.96 P0,1,2,3 = 3.016

Determine P2 = f (0.5).

6. Neville’s method is used to approximate f (0.5), giving the following table.

x0 = 0 P0 = 0
x1 = 0.4 P1 = 2.8 P0,1 = 3.5
x2 = 0.7 P2 P1,2 P0,1,2 = 27

7

Determine P2 = f (0.7).

7. Suppose xj = j, for j = 0, 1, 2, 3 and it is known that

P0,1(x) = 2x + 1, P0,2(x) = x + 1, and P1,2,3(2.5) = 3.

Find P0,1,2,3(2.5).

8. Suppose xj = j, for j = 0, 1, 2, 3 and it is known that

P0,1(x) = x + 1, P1,2(x) = 3x − 1, and P1,2,3(1.5) = 4.

Find P0,1,2,3(1.5).

9. Neville’s Algorithm is used to approximate f (0) using f (−2), f (−1), f (1), and f (2). Suppose
f (−1) was understated by 2 and f (1) was overstated by 3. Determine the error in the original
calculation of the value of the interpolating polynomial to approximate f (0).

10. Neville’s Algorithm is used to approximate f (0) using f (−2), f (−1), f (1), and f (2). Suppose
f (−1) was overstated by 2 and f (1) was understated by 3. Determine the error in the original
calculation of the value of the interpolating polynomial to approximate f (0).

11. Construct a sequence of interpolating values yn to f (1 + √10), where f (x) = (1 + x2)−1 for
−5 ≤ x ≤ 5, as follows: For each n = 1, 2, . . . , 10, let h = 10/n and yn = Pn(1+

√
10), where Pn(x)

is the interpolating polynomial for f (x) at the nodes x(n)0 , x(n)1 , . . . , x(n)n and x(n)j = −5 + jh, for each

j = 0, 1, 2, . . . , n. Does the sequence {yn} appear to converge to f (1+√10)?

Inverse Interpolation Suppose f ∈ C1[a, b], f ′(x) �= 0 on [a, b] and f has one zero p in [a, b].
Let x0, . . . , xn, be n + 1 distinct numbers in [a, b] with f (xk) = yk , for each k = 0, 1, . . . , n. To
approximate p construct the interpolating polynomial of degree n on the nodes y0, . . . , yn for f −1.
Since yk = f (xk) and 0 = f (p), it follows that f −1(yk) = xk and p = f −1(0). Using iterated
interpolation to approximate f −1(0) is called iterated inverse interpolation.

12. Use iterated inverse interpolation to find an approximation to the solution of x − e−x = 0, using the
data

x 0.3 0.4 0.5 0.6

e−x 0.740818 0.670320 0.606531 0.548812

13. Construct an algorithm that can be used for inverse interpolation.

3.3 Divided Differences

Iterated interpolation was used in the previous section to generate successively higher-degree
polynomial approximations at a specific point. Divided-difference methods introduced in
this section are used to successively generate the polynomials themselves.
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Suppose that Pn(x) is the nth Lagrange polynomial that agrees with the function f at
the distinct numbers x0, x1, . . . , xn. Although this polynomial is unique, there are alternate
algebraic representations that are useful in certain situations. The divided differences of f
with respect to x0, x1, . . . , xn are used to express Pn(x) in the form

Pn(x) = a0 + a1(x − x0)+ a2(x − x0)(x − x1)+ · · · + an(x − x0) · · · (x − xn−1), (3.5)

for appropriate constants a0, a1, . . . , an. To determine the first of these constants, a0, note
that if Pn(x) is written in the form of Eq. (3.5), then evaluating Pn(x) at x0 leaves only the
constant term a0; that is,

a0 = Pn(x0) = f (x0).

Similarly, when P(x) is evaluated at x1, the only nonzero terms in the evaluation of
Pn(x1) are the constant and linear terms,

f (x0)+ a1(x1 − x0) = Pn(x1) = f (x1);

so

a1 = f (x1)− f (x0)

x1 − x0
. (3.6)

As in so many areas, Isaac
Newton is prominent in the study
of difference equations. He
developed interpolation formulas
as early as 1675, using his �
notation in tables of differences.
He took a very general approach
to the difference formulas, so
explicit examples that he
produced, including Lagrange’s
formulas, are often known by
other names.

We now introduce the divided-difference notation, which is related to Aitken’s �2

notation used in Section 2.5. The zeroth divided difference of the function f with respect
to xi, denoted f [xi], is simply the value of f at xi:

f [xi] = f (xi). (3.7)

The remaining divided differences are defined recursively; the first divided difference
of f with respect to xi and xi+1 is denoted f [xi, xi+1] and defined as

f [xi, xi+1] = f [xi+1] − f [xi]
xi+1 − xi

. (3.8)

The second divided difference, f [xi, xi+1, xi+2], is defined as

f [xi, xi+1, xi+2] = f [xi+1, xi+2] − f [xi, xi+1]
xi+2 − xi

.

Similarly, after the (k − 1)st divided differences,

f [xi, xi+1, xi+2, . . . , xi+k−1] and f [xi+1, xi+2, . . . , xi+k−1, xi+k],
have been determined, the kth divided difference relative to xi, xi+1, xi+2, . . . , xi+k is

f [xi, xi+1, . . . , xi+k−1, xi+k] = f [xi+1, xi+2, . . . , xi+k] − f [xi, xi+1, . . . , xi+k−1]
xi+k − xi

. (3.9)

The process ends with the single nth divided difference,

f [x0, x1, . . . , xn] = f [x1, x2, . . . , xn] − f [x0, x1, . . . , xn−1]
xn − x0

.

Because of Eq. (3.6) we can write a1 = f [x0, x1], just as a0 can be expressed as a0 =
f (x0) = f [x0]. Hence the interpolating polynomial in Eq. (3.5) is

Pn(x) = f [x0] + f [x0, x1](x − x0)+ a2(x − x0)(x − x1)

+ · · · + an(x − x0)(x − x1) · · · (x − xn−1).
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As might be expected from the evaluation of a0 and a1, the required constants are

ak = f [x0, x1, x2, . . . , xk],
for each k = 0, 1, . . . , n. So Pn(x) can be rewritten in a form called Newton’s Divided-
Difference:

Pn(x) = f [x0] +
n∑

k=1

f [x0, x1, . . . , xk](x − x0) · · · (x − xk−1). (3.10)

The value of f [x0, x1, . . . , xk] is independent of the order of the numbers x0, x1, . . . , xk , as
shown in Exercise 21.

The generation of the divided differences is outlined in Table 3.9. Two fourth and one
fifth difference can also be determined from these data.

Table 3.9

First Second Third
x f (x) divided differences divided differences divided differences

x0 f [x0]
f [x0, x1] = f [x1] − f [x0]

x1 − x0

x1 f [x1] f [x0, x1, x2] = f [x1, x2] − f [x0, x1]
x2 − x0

f [x1, x2] = f [x2] − f [x1]
x2 − x1

f [x0, x1, x2, x3] = f [x1, x2, x3] − f [x0, x1, x2]
x3 − x0

x2 f [x2] f [x1, x2, x3] = f [x2, x3] − f [x1, x2]
x3 − x1

f [x2, x3] = f [x3] − f [x2]
x3 − x2

f [x1, x2, x3, x4] = f [x2, x3, x4] − f [x1, x2, x3]
x4 − x1

x3 f [x3] f [x2, x3, x4] = f [x3, x4] − f [x2, x3]
x4 − x2

f [x3, x4] = f [x4] − f [x3]
x4 − x3

f [x2, x3, x4, x5] = f [x3, x4, x5] − f [x2, x3, x4]
x5 − x2

x4 f [x4] f [x3, x4, x5] = f [x4, x5] − f [x3, x4]
x5 − x3

f [x4, x5] = f [x5] − f [x4]
x5 − x4

x5 f [x5]

ALGORITHM

3.2
Newton’s Divided-Difference Formula

To obtain the divided-difference coefficients of the interpolatory polynomial P on the (n+1)
distinct numbers x0, x1, . . . , xn for the function f :

INPUT numbers x0, x1, . . . , xn; values f (x0), f (x1), . . . , f (xn) as F0,0, F1,0, . . . , Fn,0.

OUTPUT the numbers F0,0, F1,1, . . . , Fn,n where

Pn(x) = F0,0 +
n∑

i=1

Fi,i

i−1∏
j=0

(x − xj). (Fi,i is f [x0, x1, . . . , xi].)
Step 1 For i = 1, 2, . . . , n

For j = 1, 2, . . . , i

set Fi,j = Fi,j−1 − Fi−1,j−1

xi − xi−j
. (Fi,j = f [xi−j, . . . , xi].)

Step 2 OUTPUT (F0,0, F1,1, . . . , Fn,n);
STOP.
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The form of the output in Algorithm 3.2 can be modified to produce all the divided
differences, as shown in Example 1.

Example 1 Complete the divided difference table for the data used in Example 1 of Section 3.2, and
reproduced in Table 3.10, and construct the interpolating polynomial that uses all this data.Table 3.10

x f (x)

1.0 0.7651977
1.3 0.6200860
1.6 0.4554022
1.9 0.2818186
2.2 0.1103623

Solution The first divided difference involving x0 and x1 is

f [x0, x1] = f [x1] − f [x0]
x1 − x0

= 0.6200860− 0.7651977

1.3− 1.0
= −0.4837057.

The remaining first divided differences are found in a similar manner and are shown in the
fourth column in Table 3.11.

Table 3.11 i xi f [xi] f [xi−1, xi] f [xi−2, xi−1, xi] f [xi−3, . . . , xi] f [xi−4, . . . , xi]
0 1.0 0.7651977

−0.4837057
1 1.3 0.6200860 −0.1087339

−0.5489460 0.0658784
2 1.6 0.4554022 −0.0494433 0.0018251

−0.5786120 0.0680685
3 1.9 0.2818186 0.0118183

−0.5715210
4 2.2 0.1103623

The second divided difference involving x0, x1, and x2 is

f [x0, x1, x2] = f [x1, x2] − f [x0, x1]
x2 − x0

= −0.5489460− (−0.4837057)

1.6− 1.0
= −0.1087339.

The remaining second divided differences are shown in the 5th column of Table 3.11.
The third divided difference involving x0, x1, x2, and x3 and the fourth divided difference
involving all the data points are, respectively,

f [x0, x1, x2, x3] = f [x1, x2, x3] − f [x0, x1, x2]
x3 − x0

= −0.0494433− (−0.1087339)

1.9− 1.0

= 0.0658784,

and

f [x0, x1, x2, x3, x4] = f [x1, x2, x3, x4] − f [x0, x1, x2, x3]
x4 − x0

= 0.0680685− 0.0658784

2.2− 1.0

= 0.0018251.

All the entries are given in Table 3.11.
The coefficients of the Newton forward divided-difference form of the interpolating

polynomial are along the diagonal in the table. This polynomial is

P4(x) = 0.7651977− 0.4837057(x − 1.0)− 0.1087339(x − 1.0)(x − 1.3)

+ 0.0658784(x − 1.0)(x − 1.3)(x − 1.6)

+ 0.0018251(x − 1.0)(x − 1.3)(x − 1.6)(x − 1.9).

Notice that the value P4(1.5) = 0.5118200 agrees with the result in Table 3.6 for Example
2 of Section 3.2, as it must because the polynomials are the same.
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We can use Maple with the NumericalAnalysis package to create the Newton Divided-
Difference table. First load the package and define the x and f (x) = y values that will be
used to generate the first four rows of Table 3.11.

xy := [[1.0, 0.7651977], [1.3, 0.6200860], [1.6, 0.4554022], [1.9, 0.2818186]]
The command to create the divided-difference table is

p3 := PolynomialInterpolation(xy, independentvar = ‘x’, method = newton)

A matrix containing the divided-difference table as its nonzero entries is created with the

DividedDifferenceTable(p3)

We can add another row to the table with the command

p4 := AddPoint(p3, [2.2, 0.1103623])
which produces the divided-difference table with entries corresponding to those in
Table 3.11.

The Newton form of the interpolation polynomial is created with

Interpolant(p4)

which produces the polynomial in the form of P4(x) in Example 1, except that in place of
the first two terms of P4(x):

0.7651977− 0.4837057(x − 1.0)

Maple gives this as 1.248903367− 0.4837056667x.
The Mean Value Theorem 1.8 applied to Eq. (3.8) when i = 0,

f [x0, x1] = f (x1)− f (x0)

x1 − x0
,

implies that when f ′ exists, f [x0, x1] = f ′(ξ) for some number ξ between x0 and x1. The
following theorem generalizes this result.

Theorem 3.6 Suppose that f ∈ Cn[a, b] and x0, x1, . . . , xn are distinct numbers in [a, b]. Then a number ξ
exists in (a, b) with

f [x0, x1, . . . , xn] = f (n)(ξ)

n! .

Proof Let

g(x) = f (x)− Pn(x).

Since f (xi) = Pn(xi) for each i = 0, 1, . . . , n, the function g has n+1 distinct zeros in [a, b].
Generalized Rolle’s Theorem 1.10 implies that a number ξ in (a, b) exists with g(n)(ξ) = 0,
so

0 = f (n)(ξ)− P(n)n (ξ).

Since Pn(x) is a polynomial of degree n whose leading coefficient is f [x0, x1, . . . , xn],
P(n)n (x) = n!f [x0, x1, . . . , xn],

for all values of x. As a consequence,

f [x0, x1, . . . , xn] = f (n)(ξ)

n! .
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Newton’s divided-difference formula can be expressed in a simplified form when the
nodes are arranged consecutively with equal spacing. In this case, we introduce the notation
h = xi+1 − xi, for each i = 0, 1, . . . , n − 1 and let x = x0 + sh. Then the difference x − xi

is x − xi = (s− i)h. So Eq. (3.10) becomes

Pn(x) = Pn(x0 + sh) = f [x0] + shf [x0, x1] + s(s− 1)h2f [x0, x1, x2]
+ · · · + s(s− 1) · · · (s− n+ 1)hnf [x0, x1, . . . , xn]

= f [x0] +
n∑

k=1

s(s− 1) · · · (s− k + 1)hkf [x0, x1, . . . , xk].

Using binomial-coefficient notation,(
s

k

)
= s(s− 1) · · · (s− k + 1)

k! ,

we can express Pn(x) compactly as

Pn(x) = Pn(x0 + sh) = f [x0] +
n∑

k=1

(
s

k

)
k!hkf [x0, xi, . . . , xk]. (3.11)

Forward Differences

The Newton forward-difference formula, is constructed by making use of the forward
difference notation � introduced in Aitken’s �2 method. With this notation,

f [x0, x1] = f (x1)− f (x0)

x1 − x0
= 1

h
(f (x1)− f (x0)) = 1

h
�f (x0)

f [x0, x1, x2] = 1

2h

[
�f (x1)−�f (x0)

h

]
= 1

2h2
�2f (x0),

and, in general,

f [x0, x1, . . . , xk] = 1

k!hk
�kf (x0).

Since f [x0] = f (x0), Eq. (3.11) has the following form.

Newton Forward-Difference Formula

Pn(x) = f (x0)+
n∑

k=1

(
s

k

)
�kf (x0) (3.12)

Backward Differences

If the interpolating nodes are reordered from last to first as xn, xn−1, . . . , x0, we can write
the interpolatory formula as

Pn(x) = f [xn] + f [xn, xn−1](x − xn)+ f [xn, xn−1, xn−2](x − xn)(x − xn−1)

+ · · · + f [xn, . . . , x0](x − xn)(x − xn−1) · · · (x − x1).
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130 C H A P T E R 3 Interpolation and Polynomial Approximation

If, in addition, the nodes are equally spaced with x = xn+ sh and x = xi+ (s+n− i)h,
then

Pn(x) = Pn(xn + sh)

= f [xn] + shf [xn, xn−1] + s(s+ 1)h2f [xn, xn−1, xn−2] + · · ·
+ s(s+ 1) · · · (s+ n− 1)hnf [xn, . . . , x0].

This is used to derive a commonly applied formula known as the Newton backward-
difference formula. To discuss this formula, we need the following definition.

Definition 3.7 Given the sequence {pn}∞n=0, define the backward difference ∇pn (read nabla pn) by

∇pn = pn − pn−1, for n ≥ 1.

Higher powers are defined recursively by

∇kpn = ∇(∇k−1pn), for k ≥ 2.

Definition 3.7 implies that

f [xn, xn−1] = 1

h
∇f (xn), f [xn, xn−1, xn−2] = 1

2h2
∇2f (xn),

and, in general,

f [xn, xn−1, . . . , xn−k] = 1

k!hk
∇kf (xn).

Consequently,

Pn(x) = f [xn] + s∇f (xn)+ s(s+ 1)

2
∇2f (xn)+ · · · + s(s+ 1) · · · (s+ n− 1)

n! ∇nf (xn).

If we extend the binomial coefficient notation to include all real values of s by letting

(−s

k

)
= −s(−s− 1) · · · (−s− k + 1)

k! = (−1)k
s(s+ 1) · · · (s+ k − 1)

k! ,

then

Pn(x) = f [xn]+(−1)1
(−s

1

)
∇f (xn)+(−1)2

(−s

2

)
∇2f (xn)+· · ·+(−1)n

(−s

n

)
∇nf (xn).

This gives the following result.

Newton Backward–Difference Formula

Pn(x) = f [xn] +
n∑

k=1

(−1)k
(−s

k

)
∇kf (xn) (3.13)
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3.3 Divided Differences 131

Illustration The divided-difference Table 3.12 corresponds to the data in Example 1.

Table 3.12
First divided Second divided Third divided Fourth divided
differences differences differences differences

1.0 0.7651977
−0.4837057

1.3 0.6200860 −0.1087339
−0.5489460 0.0658784

1.6 0.4554022 −0.0494433
��������
0.0018251

−0.5786120
���������
0.0680685

1.9 0.2818186
��������
0.0118183

����������
−0.5715210

2.2
��������
0.1103623

Only one interpolating polynomial of degree at most 4 uses these five data points, but we
will organize the data points to obtain the best interpolation approximations of degrees 1,
2, and 3. This will give us a sense of accuracy of the fourth-degree approximation for the
given value of x.

If an approximation to f (1.1) is required, the reasonable choice for the nodes would
be x0 = 1.0, x1 = 1.3, x2 = 1.6, x3 = 1.9, and x4 = 2.2 since this choice makes the
earliest possible use of the data points closest to x = 1.1, and also makes use of the fourth
divided difference. This implies that h = 0.3 and s = 1

3 , so the Newton forward divided-
difference formula is used with the divided differences that have a solid underline ( ) in
Table 3.12:

P4(1.1) = P4(1.0+ 1

3
(0.3))

= 0.7651977+ 1

3
(0.3)(−0.4837057)+ 1

3

(
−2

3

)
(0.3)2(−0.1087339)

+ 1

3

(
−2

3

)(
−5

3

)
(0.3)3(0.0658784)

+ 1

3

(
−2

3

)(
−5

3

)(
−8

3

)
(0.3)4(0.0018251)

= 0.7196460.

To approximate a value when x is close to the end of the tabulated values, say, x = 2.0, we
would again like to make the earliest use of the data points closest to x. This requires using
the Newton backward divided-difference formula with s = − 2

3 and the divided differences
in Table 3.12 that have a wavy underline (

����
). Notice that the fourth divided difference

is used in both formulas.

P4(2.0) = P4

(
2.2− 2

3
(0.3)

)

= 0.1103623− 2

3
(0.3)(−0.5715210)− 2

3

(
1

3

)
(0.3)2(0.0118183)

− 2

3

(
1

3

)(
4

3

)
(0.3)3(0.0680685)− 2

3

(
1

3

)(
4

3

)(
7

3

)
(0.3)4(0.0018251)

= 0.2238754. �
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Centered Differences

The Newton forward- and backward-difference formulas are not appropriate for approximat-
ing f (x)when x lies near the center of the table because neither will permit the highest-order
difference to have x0 close to x. A number of divided-difference formulas are available for
this case, each of which has situations when it can be used to maximum advantage. These
methods are known as centered-difference formulas. We will consider only one centered-
difference formula, Stirling’s method.

For the centered-difference formulas, we choose x0 near the point being approximated
and label the nodes directly below x0 as x1, x2, . . . and those directly above as x−1, x−2, . . . .
With this convention, Stirling’s formula is given by

Pn(x) = P2m+1(x) = f [x0] + sh

2
(f [x−1, x0] + f [x0, x1])+ s2h2f [x−1, x0, x1] (3.14)

+ s(s2 − 1)h3

2
f [x−2, x−1, x0, x1] + f [x−1, x0, x1, x2])

+ · · · + s2(s2 − 1)(s2 − 4) · · · (s2 − (m− 1)2)h2mf [x−m, . . . , xm]

+ s(s2 − 1) · · · (s2 − m2)h2m+1

2
(f [x−m−1, . . . , xm] + f [x−m, . . . , xm+1]),

if n = 2m + 1 is odd. If n = 2m is even, we use the same formula but delete the last line.
The entries used for this formula are underlined in Table 3.13.

James Stirling (1692–1770)
published this and numerous
other formulas in Methodus
Differentialis in 1720.
Techniques for accelerating the
convergence of various series are
included in this work.

Table 3.13 First divided Second divided Third divided Fourth divided
x f (x) differences differences differences differences

x−2 f [x−2]
f [x−2, x−1]

x−1 f [x−1] f [x−2, x−1, x0]
f [x−1, x0] f [x−2, x−1, x0, x1]

x0 f [x0] f [x−1, x0, x1] f [x−2, x−1, x0, x1, x2]
f [x0, x1] f [x−1, x0, x1, x2]

x1 f [x1] f [x0, x1, x2]
f [x1, x2]

x2 f [x2]

Example 2 Consider the table of data given in the previous examples. Use Stirling’s formula to approx-
imate f (1.5) with x0 = 1.6.

Solution To apply Stirling’s formula we use the underlined entries in the difference
Table 3.14.

Table 3.14 First divided Second divided Third divided Fourth divided
x f (x) differences differences differences differences

1.0 0.7651977
−0.4837057

1.3 0.6200860 −0.1087339
−0.5489460 0.0658784

1.6 0.4554022 −0.0494433 0.0018251
−0.5786120 0.0680685

1.9 0.2818186 0.0118183
−0.5715210

2.2 0.1103623
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3.3 Divided Differences 133

The formula, with h = 0.3, x0 = 1.6, and s = − 1
3 , becomes

f (1.5) ≈ P4

(
1.6+

(
−1

3

)
(0.3)

)

= 0.4554022+
(
−1

3

)(
0.3

2

)
((−0.5489460)+ (−0.5786120))

+
(
−1

3

)2

(0.3)2(−0.0494433)

+ 1

2

(
−1

3

)((
−1

3

)2

− 1

)
(0.3)3(0.0658784+ 0.0680685)

+
(
−1

3

)2
((
−1

3

)2

− 1

)
(0.3)4(0.0018251) = 0.5118200.

Most texts on numerical analysis written before the wide-spread use of computers have
extensive treatments of divided-difference methods. If a more comprehensive treatment of
this subject is needed, the book by Hildebrand [Hild] is a particularly good reference.

E X E R C I S E S E T 3.3

1. Use Eq. (3.10) or Algorithm 3.2 to construct interpolating polynomials of degree one, two, and three
for the following data. Approximate the specified value using each of the polynomials.

a. f (8.4) if f (8.1) = 16.94410, f (8.3) = 17.56492, f (8.6) = 18.50515, f (8.7) = 18.82091

b. f (0.9) if f (0.6) = −0.17694460, f (0.7) = 0.01375227, f (0.8) = 0.22363362, f (1.0) =
0.65809197

2. Use Eq. (3.10) or Algorithm 3.2 to construct interpolating polynomials of degree one, two, and three
for the following data. Approximate the specified value using each of the polynomials.

a. f (0.43) if f (0) = 1, f (0.25) = 1.64872, f (0.5) = 2.71828, f (0.75) = 4.48169

b. f (0) if f (−0.5) = 1.93750, f (−0.25) = 1.33203, f (0.25) = 0.800781, f (0.5) = 0.687500

3. Use Newton the forward-difference formula to construct interpolating polynomials of degree one,
two, and three for the following data. Approximate the specified value using each of the polynomials.

a. f
(− 1

3

)
if f (−0.75) = −0.07181250, f (−0.5) = −0.02475000, f (−0.25) = 0.33493750,

f (0) = 1.10100000

b. f (0.25) if f (0.1) = −0.62049958, f (0.2) = −0.28398668, f (0.3) = 0.00660095, f (0.4) =
0.24842440

4. Use the Newton forward-difference formula to construct interpolating polynomials of degree one,
two, and three for the following data. Approximate the specified value using each of the polynomials.

a. f (0.43) if f (0) = 1, f (0.25) = 1.64872, f (0.5) = 2.71828, f (0.75) = 4.48169

b. f (0.18) if f (0.1) = −0.29004986, f (0.2) = −0.56079734, f (0.3) = −0.81401972, f (0.4) =
−1.0526302

5. Use the Newton backward-difference formula to construct interpolating polynomials of degree one,
two, and three for the following data. Approximate the specified value using each of the polynomials.

a. f (−1/3) if f (−0.75) = −0.07181250, f (−0.5) = −0.02475000, f (−0.25) = 0.33493750,
f (0) = 1.10100000

b. f (0.25) if f (0.1) = −0.62049958, f (0.2) = −0.28398668, f (0.3) = 0.00660095, f (0.4) =
0.24842440
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134 C H A P T E R 3 Interpolation and Polynomial Approximation

6. Use the Newton backward-difference formula to construct interpolating polynomials of degree one,
two, and three for the following data. Approximate the specified value using each of the polynomials.

a. f (0.43) if f (0) = 1, f (0.25) = 1.64872, f (0.5) = 2.71828, f (0.75) = 4.48169

b. f (0.25) if f (−1) = 0.86199480, f (−0.5) = 0.95802009, f (0) = 1.0986123, f (0.5) =
1.2943767

7. a. Use Algorithm 3.2 to construct the interpolating polynomial of degree three for the unequally
spaced points given in the following table:

x f (x)

−0.1 5.30000
0.0 2.00000
0.2 3.19000
0.3 1.00000

b. Add f (0.35) = 0.97260 to the table, and construct the interpolating polynomial of degree four.

8. a. Use Algorithm 3.2 to construct the interpolating polynomial of degree four for the unequally
spaced points given in the following table:

x f (x)

0.0 −6.00000
0.1 −5.89483
0.3 −5.65014
0.6 −5.17788
1.0 −4.28172

b. Add f (1.1) = −3.99583 to the table, and construct the interpolating polynomial of degree five.

9. a. Approximate f (0.05) using the following data and the Newton forward-difference formula:

x 0.0 0.2 0.4 0.6 0.8

f (x) 1.00000 1.22140 1.49182 1.82212 2.22554

b. Use the Newton backward-difference formula to approximate f (0.65).

c. Use Stirling’s formula to approximate f (0.43).

10. Show that the polynomial interpolating the following data has degree 3.

x −2 −1 0 1 2 3

f (x) 1 4 11 16 13 −4

11. a. Show that the cubic polynomials

P(x) = 3− 2(x + 1)+ 0(x + 1)(x)+ (x + 1)(x)(x − 1)

and

Q(x) = −1+ 4(x + 2)− 3(x + 2)(x + 1)+ (x + 2)(x + 1)(x)

both interpolate the data

x −2 −1 0 1 2

f (x) −1 3 1 −1 3

b. Why does part (a) not violate the uniqueness property of interpolating polynomials?

12. A fourth-degree polynomial P(x) satisfies �4P(0) = 24, �3P(0) = 6, and �2P(0) = 0, where
�P(x) = P(x + 1)− P(x). Compute �2P(10).
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13. The following data are given for a polynomial P(x) of unknown degree.

x 0 1 2

P(x) 2 −1 4

Determine the coefficient of x2 in P(x) if all third-order forward differences are 1.

14. The following data are given for a polynomial P(x) of unknown degree.

x 0 1 2 3

P(x) 4 9 15 18

Determine the coefficient of x3 in P(x) if all fourth-order forward differences are 1.

15. The Newton forward-difference formula is used to approximate f (0.3) given the following data.

x 0.0 0.2 0.4 0.6

f (x) 15.0 21.0 30.0 51.0

Suppose it is discovered that f (0.4) was understated by 10 and f (0.6) was overstated by 5. By what
amount should the approximation to f (0.3) be changed?

16. For a function f , the Newton divided-difference formula gives the interpolating polynomial

P3(x) = 1+ 4x + 4x(x − 0.25)+ 16

3
x(x − 0.25)(x − 0.5),

on the nodes x0 = 0, x1 = 0.25, x2 = 0.5 and x3 = 0.75. Find f (0.75).

17. For a function f , the forward-divided differences are given by

x0 = 0.0 f [x0]
f [x0, x1]

x1 = 0.4 f [x1] f [x0, x1, x2] = 50
7

f [x1, x2] = 10
x2 = 0.7 f [x2] = 6

Determine the missing entries in the table.

18. a. The introduction to this chapter included a table listing the population of the United States from
1950 to 2000. Use appropriate divided differences to approximate the population in the years
1940, 1975, and 2020.

b. The population in 1940 was approximately 132,165,000. How accurate do you think your 1975
and 2020 figures are?

19. Given

Pn(x) = f [x0] + f [x0, x1](x − x0)+ a2(x − x0)(x − x1)

+ a3(x − x0)(x − x1)(x − x2)+ · · ·
+ an(x − x0)(x − x1) · · · (x − xn−1),

use Pn(x2) to show that a2 = f [x0, x1, x2].
20. Show that

f [x0, x1, . . . , xn, x] = f (n+1)(ξ(x))

(n+ 1)! ,

for some ξ(x). [Hint: From Eq. (3.3),

f (x) = Pn(x)+ f
(n+1)(ξ(x))

(n+ 1)! (x − x0) · · · (x − xn).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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Considering the interpolation polynomial of degree n+ 1 on x0, x1, . . . , xn, x, we have

f (x) = Pn+1(x) = Pn(x)+ f [x0, x1, . . . , xn, x](x − x0) · · · (x − xn).]
21. Let i0, i1, . . . , in be a rearrangement of the integers 0, 1, . . . , n. Show that f [xi0 , xi1 , . . ., xin ] =

f [x0, x1, . . ., xn]. [Hint: Consider the leading coefficient of the nth Lagrange polynomial on the
data {x0, x1, . . . , xn} = {xi0 , xi1 , . . . , xin }.]

3.4 Hermite Interpolation

Osculating polynomials generalize both the Taylor polynomials and the Lagrange polyno-
mials. Suppose that we are given n+ 1 distinct numbers x0, x1, . . . , xn in [a, b] and nonneg-
ative integers m0, m1, . . . , mn, and m = max{m0, m1, . . . , mn}. The osculating polynomial
approximating a function f ∈ Cm[a, b] at xi, for each i = 0, . . . , n, is the polynomial of
least degree that has the same values as the function f and all its derivatives of order less
than or equal to mi at each xi. The degree of this osculating polynomial is at most

M =
n∑

i=0

mi + n

because the number of conditions to be satisfied is
∑n

i=0 mi + (n+ 1), and a polynomial of
degree M has M + 1 coefficients that can be used to satisfy these conditions.

The Latin word osculum, literally
a “small mouth” or “kiss”, when
applied to a curve indicates that it
just touches and has the same
shape. Hermite interpolation has
this osculating property. It
matches a given curve, and its
derivative forces the interpolating
curve to “kiss” the given curve.

Definition 3.8 Let x0, x1, . . . , xn be n + 1 distinct numbers in [a, b] and for i = 0, 1, . . . , n let mi be a
nonnegative integer. Suppose that f ∈ Cm[a, b], where m = max0≤i≤n mi.

The osculating polynomial approximating f is the polynomial P(x) of least degree
such that

dkP(xi)

dxk
= dkf (xi)

dxk
, for each i = 0, 1, . . . , n and k = 0, 1, . . . , mi.

Note that when n = 0, the osculating polynomial approximating f is the m0th Taylor
polynomial for f at x0. When mi = 0 for each i, the osculating polynomial is the nth
Lagrange polynomial interpolating f on x0, x1, . . . , xn.

Charles Hermite (1822–1901)
made significant mathematical
discoveries throughout his life in
areas such as complex analysis
and number theory, particularly
involving the theory of equations.
He is perhaps best known for
proving in 1873 that e is
transcendental, that is, it is not
the solution to any algebraic
equation having integer
coefficients. This lead in 1882 to
Lindemann’s proof that π is also
transcendental, which
demonstrated that it is impossible
to use the standard geometry
tools of Euclid to construct a
square that has the same area as a
unit circle.

Hermite Polynomials

The case when mi = 1, for each i = 0, 1, . . . , n, gives the Hermite polynomials. For a given
function f , these polynomials agree with f at x0, x1, . . . , xn. In addition, since their first
derivatives agree with those of f , they have the same “shape” as the function at (xi, f (xi)) in
the sense that the tangent lines to the polynomial and the function agree. We will restrict our
study of osculating polynomials to this situation and consider first a theorem that describes
precisely the form of the Hermite polynomials.

Theorem 3.9 If f ∈ C1[a, b] and x0, . . . , xn ∈ [a, b] are distinct, the unique polynomial of least degree
agreeing with f and f ′ at x0, . . . , xn is the Hermite polynomial of degree at most 2n + 1
given by

H2n+1(x) =
n∑

j=0

f (xj)Hn, j(x)+
n∑

j=0

f ′(xj)Ĥn, j(x),
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3.4 Hermite Interpolation 137

where, for Ln, j(x) denoting the jth Lagrange coefficient polynomial of degree n, we have

Hn, j(x) = [1− 2(x − xj)L
′
n, j(xj)]L2

n, j(x) and Ĥn, j(x) = (x − xj)L
2
n, j(x).

Hermite gave a description of a
general osculatory polynomial in
a letter to Carl W. Borchardt in
1878, to whom he regularly sent
his new results. His
demonstration is an interesting
application of the use of complex
integration techniques to solve a
real-valued problem.

Moreover, if f ∈ C2n+2[a, b], then

f (x) = H2n+1(x)+ (x − x0)
2 . . . (x − xn)

2

(2n+ 2)! f (2n+2)(ξ(x)),

for some (generally unknown) ξ(x) in the interval (a, b).

Proof First recall that

Ln, j(xi) =
{

0, if i �= j,

1, if i = j.

Hence when i �= j,

Hn, j(xi) = 0 and Ĥn, j(xi) = 0,

whereas, for each i,

Hn,i(xi) = [1− 2(xi − xi)L
′
n,i(xi)] · 1 = 1 and Ĥn,i(xi) = (xi − xi) · 12 = 0.

As a consequence

H2n+1(xi) =
n∑

j=0
j �=i

f (xj) · 0+ f (xi) · 1+
n∑

j=0

f ′(xj) · 0 = f (xi),

so H2n+1 agrees with f at x0, x1, . . . , xn.
To show the agreement of H ′2n+1 with f ′ at the nodes, first note that Ln, j(x) is a factor

of H ′n, j(x), so H ′n, j(xi) = 0 when i �= j. In addition, when i = j we have Ln,i(xi) = 1, so

H ′n,i(xi) = −2L′n,i(xi) · L2
n,i(xi)+ [1− 2(xi − xi)L

′
n,i(xi)]2Ln,i(xi)L

′
n,i(xi)

= −2L′n,i(xi)+ 2L′n,i(xi) = 0.

Hence, H ′n, j(xi) = 0 for all i and j.

Finally,

Ĥ ′n, j(xi) = L2
n, j(xi)+ (xi − xj)2Ln, j(xi)L

′
n, j(xi)

= Ln, j(xi)[Ln, j(xi)+ 2(xi − xj)L
′
n, j(xi)],

so Ĥ ′n, j(xi) = 0 if i �= j and Ĥ ′n,i(xi) = 1. Combining these facts, we have

H ′2n+1(xi) =
n∑

j=0

f (xj) · 0+
n∑

j=0
j �=i

f ′(xj) · 0+ f ′(xi) · 1 = f ′(xi).

Therefore, H2n+1 agrees with f and H ′2n+1 with f ′ at x0, x1, . . . , xn.
The uniqueness of this polynomial and the error formula are considered in

Exercise 11.
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138 C H A P T E R 3 Interpolation and Polynomial Approximation

Example 1 Use the Hermite polynomial that agrees with the data listed in Table 3.15 to find an approx-
imation of f (1.5).

Table 3.15 k xk f (xk) f ′(xk)

0 1.3 0.6200860 −0.5220232
1 1.6 0.4554022 −0.5698959
2 1.9 0.2818186 −0.5811571

Solution We first compute the Lagrange polynomials and their derivatives. This gives

L2,0(x) = (x − x1)(x − x2)

(x0 − x1)(x0 − x2)
= 50

9
x2 − 175

9
x + 152

9
, L′2,0(x) =

100

9
x − 175

9
;

L2,1(x) = (x − x0)(x − x2)

(x1 − x0)(x1 − x2)
= −100

9
x2 + 320

9
x − 247

9
, L′2,1(x) =

−200

9
x + 320

9
;

and

L2,2 = (x − x0)(x − x1)

(x2 − x0)(x2 − x1)
= 50

9
x2 − 145

9
x + 104

9
, L′2,2(x) =

100

9
x − 145

9
.

The polynomials H2,j(x) and Ĥ2,j(x) are then

H2,0(x) = [1− 2(x − 1.3)(−5)]
(

50

9
x2 − 175

9
x + 152

9

)2

= (10x − 12)

(
50

9
x2 − 175

9
x + 152

9

)2

,

H2,1(x) = 1 ·
(−100

9
x2 + 320

9
x − 247

9

)2

,

H2,2(x) = 10(2− x)

(
50

9
x2 − 145

9
x + 104

9

)2

,

Ĥ2,0(x) = (x − 1.3)

(
50

9
x2 − 175

9
x + 152

9

)2

,

Ĥ2,1(x) = (x − 1.6)

(−100

9
x2 + 320

9
x − 247

9

)2

,

and

Ĥ2,2(x) = (x − 1.9)

(
50

9
x2 − 145

9
x + 104

9

)2

.

Finally

H5(x) = 0.6200860H2,0(x)+ 0.4554022H2,1(x)+ 0.2818186H2,2(x)

− 0.5220232Ĥ2,0(x)− 0.5698959Ĥ2,1(x)− 0.5811571Ĥ2,2(x)
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3.4 Hermite Interpolation 139

and

H5(1.5) = 0.6200860

(
4

27

)
+ 0.4554022

(
64

81

)
+ 0.2818186

(
5

81

)

− 0.5220232

(
4

405

)
− 0.5698959

(−32

405

)
− 0.5811571

(−2

405

)

= 0.5118277,

a result that is accurate to the places listed.

Although Theorem 3.9 provides a complete description of the Hermite polynomials, it
is clear from Example 1 that the need to determine and evaluate the Lagrange polynomials
and their derivatives makes the procedure tedious even for small values of n.

Hermite Polynomials Using Divided Differences

There is an alternative method for generating Hermite approximations that has as its basis
the Newton interpolatory divided-difference formula (3.10) at x0, x1, . . . , xn, that is,

Pn(x) = f [x0] +
n∑

k=1

f [x0, x1, . . . , xk](x − x0) · · · (x − xk−1).

The alternative method uses the connection between the nth divided difference and the nth
derivative of f , as outlined in Theorem 3.6 in Section 3.3.

Suppose that the distinct numbers x0, x1, . . . , xn are given together with the values of
f and f ′ at these numbers. Define a new sequence z0, z1, . . . , z2n+1 by

z2i = z2i+1 = xi, for each i = 0, 1, . . . , n,

and construct the divided difference table in the form of Table 3.9 that uses z0, z1, . . ., z2n+1.
Since z2i = z2i+1 = xi for each i, we cannot define f [z2i, z2i+1] by the divided difference

formula. However, if we assume, based on Theorem 3.6, that the reasonable substitution in
this situation is f [z2i, z2i+1] = f ′(z2i) = f ′(xi), we can use the entries

f ′(x0), f
′(x1), . . . , f

′(xn)

in place of the undefined first divided differences

f [z0, z1], f [z2, z3], . . . , f [z2n, z2n+1].
The remaining divided differences are produced as usual, and the appropriate divided differ-
ences are employed in Newton’s interpolatory divided-difference formula. Table 3.16 shows
the entries that are used for the first three divided-difference columns when determining
the Hermite polynomial H5(x) for x0, x1, and x2. The remaining entries are generated in the
same manner as in Table 3.9. The Hermite polynomial is then given by

H2n+1(x) = f [z0] +
2n+1∑
k=1

f [z0, . . . , zk](x − z0)(x − z1) · · · (x − zk−1).

A proof of this fact can be found in [Pow], p. 56.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



140 C H A P T E R 3 Interpolation and Polynomial Approximation

Table 3.16 First divided Second divided
z f (z) differences differences

z0 = x0 f [z0] = f (x0)

f [z0, z1] = f ′(x0)

z1 = x0 f [z1] = f (x0) f [z0, z1, z2] = f [z1, z2] − f [z0, z1]
z2 − z0

f [z1, z2] = f [z2] − f [z1]
z2 − z1

z2 = x1 f [z2] = f (x1) f [z1, z2, z3] = f [z2, z3] − f [z1, z2]
z3 − z1

f [z2, z3] = f ′(x1)

z3 = x1 f [z3] = f (x1) f [z2, z3, z4] = f [z3, z4] − f [z2, z3]
z4 − z2

f [z3, z4] = f [z4] − f [z3]
z4 − z3

z4 = x2 f [z4] = f (x2) f [z3, z4, z5] = f [z4, z5] − f [z3, z4]
z5 − z3

f [z4, z5] = f ′(x2)

z5 = x2 f [z5] = f (x2)

Example 2 Use the data given in Example 1 and the divided difference method to determine the Hermite
polynomial approximation at x = 1.5.

Solution The underlined entries in the first three columns of Table 3.17 are the data given
in Example 1. The remaining entries in this table are generated by the standard divided-
difference formula (3.9).

For example, for the second entry in the third column we use the second 1.3 entry in
the second column and the first 1.6 entry in that column to obtain

0.4554022− 0.6200860

1.6− 1.3
= −0.5489460.

For the first entry in the fourth column we use the first 1.3 entry in the third column and the
first 1.6 entry in that column to obtain

−0.5489460− (−0.5220232)

1.6− 1.3
= −0.0897427.

The value of the Hermite polynomial at 1.5 is

H5(1.5) = f [1.3] + f ′(1.3)(1.5− 1.3)+ f [1.3, 1.3, 1.6](1.5− 1.3)2

+ f [1.3, 1.3, 1.6, 1.6](1.5− 1.3)2(1.5− 1.6)

+ f [1.3, 1.3, 1.6, 1.6, 1.9](1.5− 1.3)2(1.5− 1.6)2

+ f [1.3, 1.3, 1.6, 1.6, 1.9, 1.9](1.5− 1.3)2(1.5− 1.6)2(1.5− 1.9)

= 0.6200860+ (−0.5220232)(0.2)+ (−0.0897427)(0.2)2

+ 0.0663657(0.2)2(−0.1)+ 0.0026663(0.2)2(−0.1)2

+ (−0.0027738)(0.2)2(−0.1)2(−0.4)

= 0.5118277.
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Table 3.17 1.3 0.6200860
−0.5220232

1.3 0.6200860 −0.0897427
−0.5489460 0.0663657

1.6 0.4554022 −0.0698330 0.0026663
−0.5698959 0.0679655 −0.0027738

1.6 0.4554022 −0.0290537 0.0010020
−0.5786120 0.0685667

1.9 0.2818186 −0.0084837
−0.5811571

1.9 0.2818186

The technique used in Algorithm 3.3 can be extended for use in determining other
osculating polynomials. A concise discussion of the procedures can be found in [Pow],
pp. 53–57.

ALGORITHM

3.3
Hermite Interpolation

To obtain the coefficients of the Hermite interpolating polynomial H(x) on the (n + 1)
distinct numbers x0, . . . , xn for the function f :

INPUT numbers x0, x1, . . . , xn; values f (x0), . . . , f (xn) and f ′(x0), . . ., f ′(xn).

OUTPUT the numbers Q0,0, Q1,1, . . . , Q2n+1,2n+1 where

H(x) = Q0,0 + Q1,1(x − x0)+ Q2,2(x − x0)
2 + Q3,3(x − x0)

2(x − x1)

+Q4,4(x − x0)
2(x − x1)

2 + · · ·
+Q2n+1,2n+1(x − x0)

2(x − x1)
2 · · · (x − xn−1)

2(x − xn).

Step 1 For i = 0, 1, . . . , n do Steps 2 and 3.

Step 2 Set z2i = xi;
z2i+1 = xi;
Q2i,0 = f (xi);
Q2i+1,0 = f (xi);
Q2i+1,1 = f ′(xi).

Step 3 If i �= 0 then set

Q2i,1 = Q2i,0 − Q2i−1,0

z2i − z2i−1
.

Step 4 For i = 2, 3, . . . , 2n+ 1

for j = 2, 3, . . . , i set Qi, j = Qi, j−1 − Qi−1, j−1

zi − zi−j
.

Step 5 OUTPUT (Q0,0, Q1,1, . . . , Q2n+1,2n+1);
STOP

The NumericalAnalysis package in Maple can be used to construct the Hermite coef-
ficients. We first need to load the package and to define the data that is being used, in this
case, xi, f (xi), and f ′(xi) for i = 0, 1, . . . , n. This is done by presenting the data in the form
[xi, f (xi), f ′(xi)]. For example, the data for Example 2 is entered as

xy := [[1.3, 0.6200860,−0.5220232], [1.6, 0.4554022,−0.5698959],
[1.9, 0.2818186,−0.5811571]]
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142 C H A P T E R 3 Interpolation and Polynomial Approximation

Then the command

h5 := PolynomialInterpolation(xy, method = hermite, independentvar = ′x′)
produces an array whose nonzero entries correspond to the values in Table 3.17. The Hermite
interpolating polynomial is created with the command

Interpolant(h5))

This gives the polynomial in (almost) Newton forward-difference form

1.29871616− 0.5220232x − 0.08974266667(x− 1.3)2 + 0.06636555557(x−1.3)2(x − 1.6)
+ 0.002666666633(x − 1.3)2(x − 1.6)2 − 0.002774691277(x − 1.3)2(x − 1.6)2(x − 1.9)

If a standard representation of the polynomial is needed, it is found with

expand(Interpolant(h5))

giving the Maple response

1.001944063− 0.0082292208x − 0.2352161732x2 − 0.01455607812x3

+ 0.02403178946x4 − 0.002774691277x5

E X E R C I S E S E T 3.4

1. Use Theorem 3.9 or Algorithm 3.3 to construct an approximating polynomial for the following data.

a. x f (x) f ′(x)

8.3 17.56492 3.116256
8.6 18.50515 3.151762

b. x f (x) f ′(x)

0.8 0.22363362 2.1691753
1.0 0.65809197 2.0466965

c. x f (x) f ′(x)

−0.5 −0.0247500 0.7510000
−0.25 0.3349375 2.1890000

0 1.1010000 4.0020000

d. x f (x) f ′(x)

0.1 −0.62049958 3.58502082
0.2 −0.28398668 3.14033271
0.3 0.00660095 2.66668043
0.4 0.24842440 2.16529366

2. Use Theorem 3.9 or Algorithm 3.3 to construct an approximating polynomial for the following data.
a. x f (x) f ′(x)

0 1.00000 2.00000
0.5 2.71828 5.43656

b. x f (x) f ′(x)

−0.25 1.33203 0.437500
0.25 0.800781 −0.625000

c. x f (x) f ′(x)

0.1 −0.29004996 −2.8019975
0.2 −0.56079734 −2.6159201
0.3 −0.81401972 −2.9734038

d. x f (x) f ′(x)

−1 0.86199480 0.15536240
−0.5 0.95802009 0.23269654

0 1.0986123 0.33333333
0.5 1.2943767 0.45186776

3. The data in Exercise 1 were generated using the following functions. Use the polynomials constructed
in Exercise 1 for the given value of x to approximate f (x), and calculate the absolute error.

a. f (x) = x ln x; approximate f (8.4).

b. f (x) = sin(ex − 2); approximate f (0.9).

c. f (x) = x3 + 4.001x2 + 4.002x + 1.101; approximate f (−1/3).

d. f (x) = x cos x − 2x2 + 3x − 1; approximate f (0.25).
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4. The data in Exercise 2 were generated using the following functions. Use the polynomials constructed
in Exercise 2 for the given value of x to approximate f (x), and calculate the absolute error.

a. f (x) = e2x; approximate f (0.43).

b. f (x) = x4 − x3 + x2 − x + 1; approximate f (0).

c. f (x) = x2 cos x − 3x; approximate f (0.18).

d. f (x) = ln(ex + 2); approximate f (0.25).

5. a. Use the following values and five-digit rounding arithmetic to construct the Hermite interpolating
polynomial to approximate sin 0.34.

x sin x Dx sin x = cos x

0.30 0.29552 0.95534
0.32 0.31457 0.94924
0.35 0.34290 0.93937

b. Determine an error bound for the approximation in part (a), and compare it to the actual error.

c. Add sin 0.33 = 0.32404 and cos 0.33 = 0.94604 to the data, and redo the calculations.

6. Let f (x) = 3xex − e2x .

a. Approximate f (1.03) by the Hermite interpolating polynomial of degree at most three using
x0 = 1 and x1 = 1.05. Compare the actual error to the error bound.

b. Repeat (a) with the Hermite interpolating polynomial of degree at most five, using x0 = 1,
x1 = 1.05, and x2 = 1.07.

7. Use the error formula and Maple to find a bound for the errors in the approximations of f (x) in parts
(a) and (c) of Exercise 3.

8. Use the error formula and Maple to find a bound for the errors in the approximations of f (x) in parts
(a) and (c) of Exercise 4.

9. The following table lists data for the function described by f (x) = e0.1x2
. Approximate f (1.25) by

using H5(1.25) and H3(1.25), where H5 uses the nodes x0 = 1, x1 = 2, and x2 = 3; and H3 uses the
nodes x̄0 = 1 and x̄1 = 1.5. Find error bounds for these approximations.

x f (x) = e0.1x2
f ′(x) = 0.2xe0.1x2

x0 = x0 = 1 1.105170918 0.2210341836
x̄1 = 1.5 1.252322716 0.3756968148
x1 = 2 1.491824698 0.5967298792
x2 = 3 2.459603111 1.475761867

10. A car traveling along a straight road is clocked at a number of points. The data from the observations
are given in the following table, where the time is in seconds, the distance is in feet, and the speed is
in feet per second.

Time 0 3 5 8 13

Distance 0 225 383 623 993

Speed 75 77 80 74 72

a. Use a Hermite polynomial to predict the position of the car and its speed when t = 10 s.

b. Use the derivative of the Hermite polynomial to determine whether the car ever exceeds a
55 mi/h speed limit on the road. If so, what is the first time the car exceeds this speed?

c. What is the predicted maximum speed for the car?

11. a. Show that H2n+1(x) is the unique polynomial of least degree agreeing with f and f ′ at x0, . . . , xn.
[Hint: Assume that P(x) is another such polynomial and consider D = H2n+1 − P and D′ at
x0, x1, . . . , xn.]
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b. Derive the error term in Theorem 3.9. [Hint: Use the same method as in the Lagrange error
derivation, Theorem 3.3, defining

g(t) = f (t)− H2n+1(t)− (t − x0)
2 · · · (t − xn)

2

(x − x0)2 · · · (x − xn)2
[f (x)− H2n+1(x)]

and using the fact that g′(t) has (2n+ 2) distinct zeros in [a, b].]
12. Let z0 = x0, z1 = x0, z2 = x1, and z3 = x1. Form the following divided-difference table.

z0 = x0 f [z0] = f (x0)

f [z0, z1] = f ′(x0)

z1 = x0 f [z1] = f (x0) f [z0, z1, z2]
f [z1, z2] f [z0, z1, z2, z3]

z2 = x1 f [z2] = f (x1) f [z1, z2, z3]
f [z2, z3] = f ′(x1)

z3 = x1 f [z3] = f (x1)

Show that the cubic Hermite polynomial H3(x) can also be written as f [z0] + f [z0, z1](x − x0) +
f [z0, z1, z2](x − x0)

2 + f [z0, z1, z2, z3](x − x0)
2(x − x1).

3.5 Cubic Spline Interpolation1

The previous sections concerned the approximation of arbitrary functions on closed intervals
using a single polynomial. However, high-degree polynomials can oscillate erratically, that
is, a minor fluctuation over a small portion of the interval can induce large fluctuations
over the entire range. We will see a good example of this in Figure 3.14 at the end of this
section.

An alternative approach is to divide the approximation interval into a collection of
subintervals and construct a (generally) different approximating polynomial on each sub-
interval. This is called piecewise-polynomial approximation.

Piecewise-Polynomial Approximation

The simplest piecewise-polynomial approximation is piecewise-linear interpolation, which
consists of joining a set of data points

{(x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn))}
by a series of straight lines, as shown in Figure 3.7.

A disadvantage of linear function approximation is that there is likely no differ-
entiability at the endpoints of the subintervals, which, in a geometrical context, means
that the interpolating function is not “smooth.” Often it is clear from physical condi-
tions that smoothness is required, so the approximating function must be continuously
differentiable.

An alternative procedure is to use a piecewise polynomial of Hermite type. For example,
if the values of f and of f ′ are known at each of the points x0 < x1 < · · · < xn, a cubic
Hermite polynomial can be used on each of the subintervals [x0, x1], [x1, x2], . . . , [xn−1, xn]
to obtain a function that has a continuous derivative on the interval [x0, xn].

1The proofs of the theorems in this section rely on results in Chapter 6.
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Figure 3.7

y � f (x)

x0 x1 x2 xj xj�1 xj�2 xn�1 xn. . . . . .

y

x

To determine the appropriate Hermite cubic polynomial on a given interval is simply
a matter of computing H3(x) for that interval. The Lagrange interpolating polynomials
needed to determine H3 are of first degree, so this can be accomplished without great
difficulty. However, to use Hermite piecewise polynomials for general interpolation, we
need to know the derivative of the function being approximated, and this is frequently
unavailable.

The remainder of this section considers approximation using piecewise polynomials
that require no specific derivative information, except perhaps at the endpoints of the interval
on which the function is being approximated.

Isaac Jacob Schoenberg
(1903–1990) developed his work
on splines during World War II
while on leave from the
University of Pennsylvania to
work at the Army’s Ballistic
Research Laboratory in
Aberdeen, Maryland. His original
work involved numerical
procedures for solving
differential equations. The much
broader application of splines to
the areas of data fitting and
computer-aided geometric design
became evident with the
widespread availability of
computers in the 1960s.

The simplest type of differentiable piecewise-polynomial function on an entire interval
[x0, xn] is the function obtained by fitting one quadratic polynomial between each successive
pair of nodes. This is done by constructing a quadratic on [x0, x1] agreeing with the function
at x0 and x1, another quadratic on [x1, x2] agreeing with the function at x1 and x2, and so
on. A general quadratic polynomial has three arbitrary constants—the constant term, the
coefficient of x, and the coefficient of x2—and only two conditions are required to fit the
data at the endpoints of each subinterval. So flexibility exists that permits the quadratics to
be chosen so that the interpolant has a continuous derivative on [x0, xn]. The difficulty arises
because we generally need to specify conditions about the derivative of the interpolant at
the endpoints x0 and xn. There is not a sufficient number of constants to ensure that the
conditions will be satisfied. (See Exercise 26.)

The root of the word “spline” is
the same as that of splint. It was
originally a small strip of wood
that could be used to join two
boards. Later the word was used
to refer to a long flexible strip,
generally of metal, that could be
used to draw continuous smooth
curves by forcing the strip to pass
through specified points and
tracing along the curve.

Cubic Splines

The most common piecewise-polynomial approximation uses cubic polynomials between
each successive pair of nodes and is called cubic spline interpolation. A general cubic
polynomial involves four constants, so there is sufficient flexibility in the cubic spline pro-
cedure to ensure that the interpolant is not only continuously differentiable on the interval,
but also has a continuous second derivative. The construction of the cubic spline does not,
however, assume that the derivatives of the interpolant agree with those of the function it is
approximating, even at the nodes. (See Figure 3.8.)
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Figure 3.8
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Definition 3.10 Given a function f defined on [a, b] and a set of nodes a = x0 < x1 < · · · <
xn = b, a cubic spline interpolant S for f is a function that satisfies the following
conditions:

(a) S(x) is a cubic polynomial, denoted Sj(x), on the subinterval [xj, xj+1] for each
j = 0, 1, . . . , n− 1;

(b) Sj(xj) = f (xj) and Sj(xj+1) = f (xj+1) for each j = 0, 1, . . . , n− 1;

(c) Sj+1(xj+1) = Sj(xj+1) for each j = 0, 1, . . . , n− 2; (Implied by (b).)

(d) S′j+1(xj+1) = S′j(xj+1) for each j = 0, 1, . . . , n− 2;

(e) S′′j+1(xj+1) = S′′j (xj+1) for each j = 0, 1, . . . , n− 2;

(f) One of the following sets of boundary conditions is satisfied:

(i) S′′(x0) = S′′(xn) = 0 (natural (or free) boundary);

(ii) S′(x0) = f ′(x0) and S′(xn) = f ′(xn) (clamped boundary).

A natural spline has no conditions
imposed for the direction at its
endpoints, so the curve takes the
shape of a straight line after it
passes through the interpolation
points nearest its endpoints. The
name derives from the fact that
this is the natural shape a flexible
strip assumes if forced to pass
through specified interpolation
points with no additional
constraints. (See Figure 3.9.)

Figure 3.9

Although cubic splines are defined with other boundary conditions, the conditions given
in (f) are sufficient for our purposes. When the free boundary conditions occur, the spline is
called a natural spline, and its graph approximates the shape that a long flexible rod would
assume if forced to go through the data points {(x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn))}.

In general, clamped boundary conditions lead to more accurate approximations because
they include more information about the function. However, for this type of boundary
condition to hold, it is necessary to have either the values of the derivative at the endpoints
or an accurate approximation to those values.

Example 1 Construct a natural cubic spline that passes through the points (1, 2), (2, 3), and (3, 5).

Solution This spline consists of two cubics. The first for the interval [1, 2], denoted

S0(x) = a0 + b0(x − 1)+ c0(x − 1)2 + d0(x − 1)3,
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and the other for [2, 3], denoted

S1(x) = a1 + b1(x − 2)+ c1(x − 2)2 + d1(x − 2)3.

There are 8 constants to be determined, which requires 8 conditions. Four conditions come
from the fact that the splines must agree with the data at the nodes. Hence

2 = f (1) = a0, 3 = f (2) = a0 + b0 + c0 + d0, 3 = f (2) = a1, and

5 = f (3) = a1 + b1 + c1 + d1.

Two more come from the fact that S′0(2) = S′1(2) and S′′0 (2) = S′′1 (2). These are

S′0(2) = S′1(2) : b0 + 2c0 + 3d0 = b1 and S′′0 (2) = S′′1 (2) : 2c0 + 6d0 = 2c1

The final two come from the natural boundary conditions:

S′′0 (1) = 0 : 2c0 = 0 and S′′1 (3) = 0 : 2c1 + 6d1 = 0.

Solving this system of equations gives the spline

S(x) =
{

2+ 3
4 (x − 1)+ 1

4 (x − 1)3, for x ∈ [1, 2]
3+ 3

2 (x − 2)+ 3
4 (x − 2)2 − 1

4 (x − 2)3, for x ∈ [2, 3]

Construction of a Cubic Spline

As the preceding example demonstrates, a spline defined on an interval that is divided into n
subintervals will require determining 4n constants. To construct the cubic spline interpolant
for a given function f , the conditions in the definition are applied to the cubic polynomials

Sj(x) = aj + bj(x − xj)+ cj(x − xj)
2 + dj(x − xj)

3,

for each j = 0, 1, . . . , n − 1. Since Sj(xj) = aj = f (xj), condition (c) can be applied to
obtain

aj+1 = Sj+1(xj+1) = Sj(xj+1) = aj + bj(xj+1 − xj)+ cj(xj+1 − xj)
2 + dj(xj+1 − xj)

3,

for each j = 0, 1, . . . , n− 2.

Clamping a spline indicates that
the ends of the flexible strip are
fixed so that it is forced to take a
specific direction at each of its
endpoints. This is important, for
example, when two spline
functions should match at their
endpoints. This is done
mathematically by specifying the
values of the derivative of the
curve at the endpoints of the
spline.

The terms xj+1 − xj are used repeatedly in this development, so it is convenient to
introduce the simpler notation

hj = xj+1 − xj,

for each j = 0, 1, . . . , n− 1. If we also define an = f (xn), then the equation

aj+1 = aj + bjhj + cjh
2
j + djh

3
j (3.15)

holds for each j = 0, 1, . . . , n− 1.
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In a similar manner, define bn = S′(xn) and observe that

S′j(x) = bj + 2cj(x − xj)+ 3dj(x − xj)
2

implies S′j(xj) = bj, for each j = 0, 1, . . . , n− 1. Applying condition (d) gives

bj+1 = bj + 2cjhj + 3djh
2
j , (3.16)

for each j = 0, 1, . . . , n− 1.
Another relationship between the coefficients of Sj is obtained by defining cn =

S′′(xn)/2 and applying condition (e). Then, for each j = 0, 1, . . . , n− 1,

cj+1 = cj + 3djhj. (3.17)

Solving for dj in Eq. (3.17) and substituting this value into Eqs. (3.15) and (3.16) gives,
for each j = 0, 1, . . . , n− 1, the new equations

aj+1 = aj + bjhj +
h2

j

3
(2cj + cj+1) (3.18)

and

bj+1 = bj + hj(cj + cj+1). (3.19)

The final relationship involving the coefficients is obtained by solving the appropriate
equation in the form of equation (3.18), first for bj,

bj = 1

hj
(aj+1 − aj)− hj

3
(2cj + cj+1), (3.20)

and then, with a reduction of the index, for bj−1. This gives

bj−1 = 1

hj−1
(aj − aj−1)− hj−1

3
(2cj−1 + cj).

Substituting these values into the equation derived from Eq. (3.19), with the index reduced
by one, gives the linear system of equations

hj−1cj−1 + 2(hj−1 + hj)cj + hjcj+1 = 3

hj
(aj+1 − aj)− 3

hj−1
(aj − aj−1), (3.21)

for each j = 1, 2, . . . , n− 1. This system involves only the {cj}nj=0 as unknowns. The values

of {hj}n−1
j=0 and {aj}nj=0 are given, respectively, by the spacing of the nodes {xj}nj=0 and the

values of f at the nodes. So once the values of {cj}nj=0 are determined, it is a simple matter

to find the remainder of the constants {bj}n−1
j=0 from Eq. (3.20) and {dj}n−1

j=0 from Eq. (3.17).

Then we can construct the cubic polynomials {Sj(x)}n−1
j=0 .

The major question that arises in connection with this construction is whether the values
of {cj}nj=0 can be found using the system of equations given in (3.21) and, if so, whether
these values are unique. The following theorems indicate that this is the case when either of
the boundary conditions given in part (f) of the definition are imposed. The proofs of these
theorems require material from linear algebra, which is discussed in Chapter 6.
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Natural Splines

Theorem 3.11 If f is defined at a = x0 < x1 < · · · < xn = b, then f has a unique natural spline interpolant
S on the nodes x0, x1, . . ., xn; that is, a spline interpolant that satisfies the natural boundary
conditions S′′(a) = 0 and S′′(b) = 0.

Proof The boundary conditions in this case imply that cn = S′′(xn)/2 = 0 and that

0 = S′′(x0) = 2c0 + 6d0(x0 − x0),

so c0 = 0. The two equations c0 = 0 and cn = 0 together with the equations in (3.21)
produce a linear system described by the vector equation Ax = b, where A is the (n+ 1)×
(n+ 1) matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............

0

h0 2(h0 + h1) h1

...........

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h1 . . . . . . . . . . . . . . . . . . . . .

2(h1 . . . . . . . . . . . . . . . . . .

+ h2) h2 . . . . . . . . . . . . . . . . . . . . . .
0

hn−2 2(hn−2 + hn−1) hn−1

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and b and x are the vectors

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
3

h1
(a2 − a1)− 3

h0
(a1 − a0)

...
3

hn−1
(an − an−1)− 3

hn−2
(an−1 − an−2)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and x =

⎡
⎢⎢⎢⎣

c0

c1
...

cn

⎤
⎥⎥⎥⎦ .

The matrix A is strictly diagonally dominant, that is, in each row the magnitude of the
diagonal entry exceeds the sum of the magnitudes of all the other entries in the row. A linear
system with a matrix of this form will be shown by Theorem 6.21 in Section 6.6 to have a
unique solution for c0, c1, . . . , cn.

The solution to the cubic spline problem with the boundary conditions S′′(x0) =
S′′(xn) = 0 can be obtained by applying Algorithm 3.4.

ALGORITHM

3.4
Natural Cubic Spline

To construct the cubic spline interpolant S for the function f , defined at the numbers
x0 < x1 < · · · < xn, satisfying S′′(x0) = S′′(xn) = 0:

INPUT n; x0, x1, . . . , xn; a0 = f (x0), a1 = f (x1), . . . , an = f (xn).

OUTPUT aj, bj, cj, dj for j = 0, 1, . . . , n− 1.

(Note: S(x) = Sj(x) = aj + bj(x − xj)+ cj(x − xj)
2 + dj(x − xj)

3 for xj ≤ x ≤ xj+1.)

Step 1 For i = 0, 1, . . . , n− 1 set hi = xi+1 − xi.
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Step 2 For i = 1, 2, . . . , n− 1 set

αi = 3

hi
(ai+1 − ai)− 3

hi−1
(ai − ai−1).

Step 3 Set l0 = 1; (Steps 3, 4, 5, and part of Step 6 solve a tridiagonal linear system
using a method described in Algorithm 6.7.)

μ0 = 0;
z0 = 0.

Step 4 For i = 1, 2, . . . , n− 1
set li = 2(xi+1 − xi−1)− hi−1μi−1;
μi = hi/li;
zi = (αi − hi−1zi−1)/li.

Step 5 Set ln = 1;
zn = 0;
cn = 0.

Step 6 For j = n− 1, n− 2, . . . , 0
set cj = zj − μjcj+1;

bj = (aj+1 − aj)/hj − hj(cj+1 + 2cj)/3;
dj = (cj+1 − cj)/(3hj).

Step 7 OUTPUT (aj, bj, cj, dj for j = 0, 1, . . . , n− 1);
STOP.

Example 2 At the beginning of Chapter 3 we gave some Taylor polynomials to approximate the expo-
nential f (x) = ex. Use the data points (0, 1), (1, e), (2, e2), and (3, e3) to form a natural
spline S(x) that approximates f (x) = ex.

Solution We have n = 3, h0 = h1 = h2 = 1, a0 = 1, a1 = e, a2 = e2, and a3 = e3. So the
matrix A and the vectors b and x given in Theorem 3.11 have the forms

A =

⎡
⎢⎢⎣

1 0 0 0
1 4 1 0
0 1 4 1
0 0 0 1

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣

0
3(e2 − 2e+ 1)
3(e3 − 2e2 + e)

0

⎤
⎥⎥⎦ , and x =

⎡
⎢⎢⎣

c0

c1

c2

c3

⎤
⎥⎥⎦ .

The vector-matrix equation Ax = b is equivalent to the system of equations

c0 = 0,

c0 + 4c1 + c2 = 3(e2 − 2e+ 1),

c1 + 4c2 + c3 = 3(e3 − 2e2 + e),

c3 = 0.

This system has the solution c0 = c3 = 0, and to 5 decimal places,

c1 = 1

5
(−e3+ 6e2− 9e+ 4) ≈ 0.75685, and c2 = 1

5
(4e3− 9e2+ 6e− 1) ≈ 5.83007.
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Solving for the remaining constants gives

b0 = 1

h0
(a1 − a0)− h0

3
(c1 + 2c0)

= (e− 1)− 1

15
(−e3 + 6e2 − 9e+ 4) ≈ 1.46600,

b1 = 1

h1
(a2 − a1)− h1

3
(c2 + 2c1)

= (e2 − e)− 1

15
(2e3 + 3e2 − 12e+ 7) ≈ 2.22285,

b2 = 1

h2
(a3 − a2)− h2

3
(c3 + 2c2)

= (e3 − e2)− 1

15
(8e3 − 18e2 + 12e− 2) ≈ 8.80977,

d0 = 1

3h0
(c1 − c0) = 1

15
(−e3 + 6e2 − 9e+ 4) ≈ 0.25228,

d1 = 1

3h1
(c2 − c1) = 1

3
(e3 − 3e2 + 3e− 1) ≈ 1.69107,

and

d2 = 1

3h2
(c3 − c1) = 1

15
(−4e3 + 9e2 − 6e+ 1) ≈ −1.94336.

The natural cubic spine is described piecewise by

S(x)=

⎧⎪⎨
⎪⎩

1+ 1.46600x + 0.25228x3, for x ∈ [0, 1],
2.71828+ 2.22285(x −1)+ 0.75685(x −1)2 +1.69107(x −1)3, for x ∈ [1, 2],
7.38906+ 8.80977(x −2)+ 5.83007(x −2)2 −1.94336(x −2)3, for x ∈ [2, 3].

The spline and its agreement with f (x) = ex are shown in Figure 3.10.

Figure 3.10
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The NumericalAnalysis package can be used to create a cubic spline in a manner similar
to other constructions in this chapter. However, the CurveFitting Package in Maple can also
be used, and since this has not been discussed previously we will use it to create the natural
spline in Example 2. First we load the package with the command

with(CurveFitting)

and define the function being approximated with

f := x→ ex

To create a spline we need to specify the nodes, variable, the degree, and the natural end-
points. This is done with

sn := t→ Spline([[0., 1.0], [1.0, f (1.0)], [2.0, f (2.0)], [3.0, f (3.0)]], t, degree = 3,
endpoints = ‘natural’)

Maple returns

t→ CurveFitting:-Spline([[0., 1.0], [1.0, f (1.0)], [2.0, f (2.0)], [3.0, f (3.0)]], t,
degree = 3, endpoints = ’natural’)

The form of the natural spline is seen with the command

sn(t)

which produces

⎧⎪⎨
⎪⎩

1.+ 1.465998t2 + 0.2522848t3 t < 1.0

0.495432+ 2.22285t + 0.756853(t − 1.0)2 + 1.691071(t − 1.0)3 t < 2.0

−10.230483+ 8.809770t + 5.830067(t − 2.0)2 − 1.943356(t − 2.0)3 otherwise

Once we have determined a spline approximation for a function we can use it to
approximate other properties of the function. The next illustration involves the integral
of the spline we found in the previous example.

Illustration To approximate the integral of f (x) = ex on [0, 3], which has the value

∫ 3

0
ex dx = e3 − 1 ≈ 20.08553692− 1 = 19.08553692,

we can piecewise integrate the spline that approximates f on this integral. This gives

∫ 3

0
S(x) =

∫ 1

0
1+ 1.46600x + 0.25228x3 dx

+
∫ 2

1
2.71828+ 2.22285(x − 1)+ 0.75685(x − 1)2 + 1.69107(x − 1)3 dx

+
∫ 3

2
7.38906+ 8.80977(x − 2)+ 5.83007(x − 2)2 − 1.94336(x − 2)3 dx.
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Integrating and collecting values from like powers gives

∫ 3

0
S(x) =

[
x + 1.46600

x2

2
+ 0.25228

x4

4

]1

0

+
[

2.71828(x−1)+ 2.22285
(x−1)2

2
+ 0.75685

(x−1)3

3
+1.69107

(x−1)4

4

]2

1

+
[

7.38906(x−2)+ 8.80977
(x−2)2

2
+ 5.83007

(x−2)3

3
−1.94336

(x−2)4

4

]3

2

= (1+ 2.71828+ 7.38906)+ 1

2
(1.46600+ 2.22285+ 8.80977)

+ 1

3
(0.75685+ 5.83007)+ 1

4
(0.25228+ 1.69107− 1.94336)

= 19.55229.

Because the nodes are equally spaced in this example the integral approximation is
simply∫ 3

0
S(x) dx = (a0+a1+a2)+ 1

2
(b0+b1+b2)+ 1

3
(c0+c1+c2)+ 1

4
(d0+d1+d2). (3.22)

�

If we create the natural spline using Maple as described after Example 2, we can then
use Maple’s integration command to find the value in the Illustration. Simply enter

int(sn(t), t = 0 .. 3)

19.55228648

Clamped Splines

Example 3 In Example 1 we found a natural spline S that passes through the points (1, 2), (2, 3),
and (3, 5). Construct a clamped spline s through these points that has s′(1) = 2 and
s′(3) = 1.

Solution Let

s0(x) = a0 + b0(x − 1)+ c0(x − 1)2 + d0(x − 1)3,

be the cubic on [1, 2] and the cubic on [2, 3] be

s1(x) = a1 + b1(x − 2)+ c1(x − 2)2 + d1(x − 2)3.

Then most of the conditions to determine the 8 constants are the same as those in Example
1. That is,

2 = f (1) = a0, 3 = f (2) = a0 + b0 + c0 + d0, 3 = f (2) = a1, and

5 = f (3) = a1 + b1 + c1 + d1.

s′0(2) = s′1(2) : b0 + 2c0 + 3d0 = b1 and s′′0(2) = s′′1(2) : 2c0 + 6d0 = 2c1
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However, the boundary conditions are now

s′0(1) = 2 : b0 = 2 and s′1(3) = 1 : b1 + 2c1 + 3d1 = 1.

Solving this system of equations gives the spline as

s(x) =
{

2+ 2(x − 1)− 5
2 (x − 1)2 + 3

2 (x − 1)3, for x ∈ [1, 2]
3+ 3

2 (x − 2)+ 2(x − 2)2 − 3
2 (x − 2)3, for x ∈ [2, 3]

In the case of general clamped boundary conditions we have a result that is similar to
the theorem for natural boundary conditions described in Theorem 3.11.

Theorem 3.12 If f is defined at a = x0 < x1 < · · · < xn = b and differentiable at a and b, then f has a
unique clamped spline interpolant S on the nodes x0, x1, . . . , xn; that is, a spline interpolant
that satisfies the clamped boundary conditions S′(a) = f ′(a) and S′(b) = f ′(b).

Proof Since f ′(a) = S′(a) = S′(x0) = b0, Eq. (3.20) with j = 0 implies

f ′(a) = 1

h0
(a1 − a0)− h0

3
(2c0 + c1).

Consequently,

2h0c0 + h0c1 = 3

h0
(a1 − a0)− 3f ′(a).

Similarly,

f ′(b) = bn = bn−1 + hn−1(cn−1 + cn),

so Eq. (3.20) with j = n− 1 implies that

f ′(b) = an − an−1

hn−1
− hn−1

3
(2cn−1 + cn)+ hn−1(cn−1 + cn)

= an − an−1

hn−1
+ hn−1

3
(cn−1 + 2cn),

and

hn−1cn−1 + 2hn−1cn = 3f ′(b)− 3

hn−1
(an − an−1).

Equations (3.21) together with the equations

2h0c0 + h0c1 = 3

h0
(a1 − a0)− 3f ′(a)

and

hn−1cn−1 + 2hn−1cn = 3f ′(b)− 3

hn−1
(an − an−1)
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3.5 Cubic Spline Interpolation 155

determine the linear system Ax = b, where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2h0 h0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............

0

h0 2(h0 + h1) h1

...........

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h1 . . . . . . . . . . . . . . . . . . . . . .

2(h1 . . . . . . . . . . . . . . . . . . .

+ h2) h2 . . . . . . . . . . . . . . . . . . . . . . .
0

hn−2 2(hn−2 + hn−1) hn−1

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 hn−1 2hn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
h0
(a1 − a0)− 3f ′(a)

3
h1
(a2 − a1)− 3

h0
(a1 − a0)

...
3

hn−1
(an − an−1)− 3

hn−2
(an−1 − an−2)

3f ′(b)− 3
hn−1

(an − an−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and x =

⎡
⎢⎢⎢⎣

c0

c1
...

cn

⎤
⎥⎥⎥⎦ .

This matrix A is also strictly diagonally dominant, so it satisfies the conditions of
Theorem 6.21 in Section 6.6. Therefore, the linear system has a unique solution for
c0, c1, . . . , cn.

The solution to the cubic spline problem with the boundary conditions S′(x0) = f ′(x0)

and S′(xn) = f ′(xn) can be obtained by applying Algorithm 3.5.

ALGORITHM

3.5
Clamped Cubic Spline

To construct the cubic spline interpolant S for the function f defined at the numbers x0 <

x1 < · · · < xn, satisfying S′(x0) = f ′(x0) and S′(xn) = f ′(xn):

INPUT n; x0, x1, . . . , xn; a0 = f (x0), a1 = f (x1), . . . , an = f (xn); FPO = f ′(x0);
FPN = f ′(xn).

OUTPUT aj, bj, cj, dj for j = 0, 1, . . . , n− 1.

(Note: S(x) = Sj(x) = aj + bj(x − xj)+ cj(x − xj)
2 + dj(x − xj)

3 for xj ≤ x ≤ xj+1.)

Step 1 For i = 0, 1, . . . , n− 1 set hi = xi+1 − xi.

Step 2 Set α0 = 3(a1 − a0)/h0 − 3FPO;
αn = 3FPN− 3(an − an−1)/hn−1.

Step 3 For i = 1, 2, . . . , n− 1

set αi = 3

hi
(ai+1 − ai)− 3

hi−1
(ai − ai−1).

Step 4 Set l0 = 2h0; (Steps 4,5,6, and part of Step 7 solve a tridiagonal linear system
using a method described in Algorithm 6.7.)

μ0 = 0.5;
z0 = α0/l0.

Step 5 For i = 1, 2, . . . , n− 1
set li = 2(xi+1 − xi−1)− hi−1μi−1;
μi = hi/li;
zi = (αi − hi−1zi−1)/li.
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Step 6 Set ln = hn−1(2− μn−1);
zn = (αn − hn−1zn−1)/ln;
cn = zn.

Step 7 For j = n− 1, n− 2, . . . , 0
set cj = zj − μjcj+1;

bj = (aj+1 − aj)/hj − hj(cj+1 + 2cj)/3;
dj = (cj+1 − cj)/(3hj).

Step 8 OUTPUT (aj, bj, cj, dj for j = 0, 1, . . . , n− 1);
STOP.

Example 4 Example 2 used a natural spline and the data points (0, 1), (1, e), (2, e2), and (3, e3) to form
a new approximating function S(x). Determine the clamped spline s(x) that uses this data
and the additional information that, since f ′(x) = ex, so f ′(0) = 1 and f ′(3) = e3.

Solution As in Example 2, we have n = 3, h0 = h1 = h2 = 1, a0 = 0, a1 = e, a2 = e2,
and a3 = e3. This together with the information that f ′(0) = 1 and f ′(3) = e3 gives the
the matrix A and the vectors b and x with the forms

A =

⎡
⎢⎢⎣

2 1 0 0
1 4 1 0
0 1 4 1
0 0 1 2

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣

3(e− 2)
3(e2 − 2e+ 1)
3(e3 − 2e2 + e)

3e2

⎤
⎥⎥⎦ , and x =

⎡
⎢⎢⎣

c0

c1

c2

c3

⎤
⎥⎥⎦ .

The vector-matrix equation Ax = b is equivalent to the system of equations

2c0 + c1 = 3(e− 2),

c0 + 4c1 + c2 = 3(e2 − 2e+ 1),

c1 + 4c2 + c3 = 3(e3 − 2e2 + e),

c2 + 2c3 = 3e2.

Solving this system simultaneously for c0, c1, c2 and c3 gives, to 5 decimal places,

c0 = 1

15
(2e3 − 12e2 + 42e− 59) = 0.44468,

c1 = 1

15
(−4e3 + 24e2 − 39e+ 28) = 1.26548,

c2 = 1

15
(14e3 − 39e2 + 24e− 8) = 3.35087,

c3 = 1

15
(−7e3 + 42e2 − 12e+ 4) = 9.40815.

Solving for the remaining constants in the same manner as Example 2 gives

b0 = 1.00000, b1 = 2.71016, b2 = 7.32652,

and

d0 = 0.27360, d1 = 0.69513, d2 = 2.01909.
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This gives the clamped cubic spine

s(x) =

⎧⎪⎨
⎪⎩

1+ x + 0.44468x2 + 0.27360x3, if 0 ≤ x < 1,

2.71828+ 2.71016(x −1)+ 1.26548(x −1)2 + 0.69513(x −1)3, if 1 ≤ x < 2,

7.38906+ 7.32652(x −2)+ 3.35087(x −2)2 + 2.01909(x −2)3, if 2 ≤ x ≤ 3.

The graph of the clamped spline and f (x) = ex are so similar that no difference can be
seen.

We can create the clamped cubic spline in Example 4 with the same commands we
used for the natural spline, the only change that is needed is to specify the derivative at the
endpoints. In this case we use

sn := t→ Spline ([[0., 1.0], [1.0, f (1.0)], [2.0, f (2.0)], [3.0, f (3.0)]], t, degree = 3,
endpoints = [1.0, e3.0

])
giving essentially the same results as in the example.

We can also approximate the integral of f on [0, 3], by integrating the clamped spline.
The exact value of the integral is∫ 3

0
ex dx = e3 − 1 ≈ 20.08554− 1 = 19.08554.

Because the data is equally spaced, piecewise integrating the clamped spline results in the
same formula as in (3.22), that is,∫ 3

0
s(x) dx = (a0 + a1 + a2)+ 1

2
(b0 + b1 + b2)

+ 1

3
(c0 + c1 + c2)+ 1

4
(d0 + d1 + d2).

Hence the integral approximation is∫ 3

0
s(x) dx = (1+ 2.71828+ 7.38906)+ 1

2
(1+ 2.71016+ 7.32652)

+ 1

3
(0.44468+ 1.26548+ 3.35087)+ 1

4
(0.27360+ 0.69513+ 2.01909)

= 19.05965.

The absolute error in the integral approximation using the clamped and natural splines are

Natural : |19.08554− 19.55229| = 0.46675

and

Clamped : |19.08554− 19.05965| = 0.02589.

For integration purposes the clamped spline is vastly superior. This should be no surprise
since the boundary conditions for the clamped spline are exact, whereas for the natural
spline we are essentially assuming that, since f ′′(x) = ex,

0 = S′′(0) ≈ f ′′(0) = e1 = 1 and 0 = S′′(3) ≈ f ′′(3) = e3 ≈ 20.

The next illustration uses a spine to approximate a curve that has no given functional
representation.
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Illustration Figure 3.11 shows a ruddy duck in flight. To approximate the top profile of the duck, we
have chosen points along the curve through which we want the approximating curve to pass.
Table 3.18 lists the coordinates of 21 data points relative to the superimposed coordinate
system shown in Figure 3.12. Notice that more points are used when the curve is changing
rapidly than when it is changing more slowly.

Figure 3.11

Table 3.18

x 0.9 1.3 1.9 2.1 2.6 3.0 3.9 4.4 4.7 5.0 6.0 7.0 8.0 9.2 10.5 11.3 11.6 12.0 12.6 13.0 13.3

f (x) 1.3 1.5 1.85 2.1 2.6 2.7 2.4 2.15 2.05 2.1 2.25 2.3 2.25 1.95 1.4 0.9 0.7 0.6 0.5 0.4 0.25

Figure 3.12
f (x)

x

1

2

3

4

6 7 8 91 32 4 5 10 11 12 13

Using Algorithm 3.4 to generate the natural cubic spline for this data produces the coeffi-
cients shown in Table 3.19. This spline curve is nearly identical to the profile, as shown in
Figure 3.13.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3.5 Cubic Spline Interpolation 159

Table 3.19
j xj aj bj cj dj

0 0.9 1.3 5.40 0.00 −0.25
1 1.3 1.5 0.42 −0.30 0.95
2 1.9 1.85 1.09 1.41 −2.96
3 2.1 2.1 1.29 −0.37 −0.45
4 2.6 2.6 0.59 −1.04 0.45
5 3.0 2.7 −0.02 −0.50 0.17
6 3.9 2.4 −0.50 −0.03 0.08
7 4.4 2.15 −0.48 0.08 1.31
8 4.7 2.05 −0.07 1.27 −1.58
9 5.0 2.1 0.26 −0.16 0.04

10 6.0 2.25 0.08 −0.03 0.00
11 7.0 2.3 0.01 −0.04 −0.02
12 8.0 2.25 −0.14 −0.11 0.02
13 9.2 1.95 −0.34 −0.05 −0.01
14 10.5 1.4 −0.53 −0.10 −0.02
15 11.3 0.9 −0.73 −0.15 1.21
16 11.6 0.7 −0.49 0.94 −0.84
17 12.0 0.6 −0.14 −0.06 0.04
18 12.6 0.5 −0.18 0.00 −0.45
19 13.0 0.4 −0.39 −0.54 0.60
20 13.3 0.25

Figure 3.13
f (x)

x

1

2

3

4

6 7 8 931 2 54 10 11 12 13

For comparison purposes, Figure 3.14 gives an illustration of the curve that is generated using
a Lagrange interpolating polynomial to fit the data given in Table 3.18. The interpolating
polynomial in this case is of degree 20 and oscillates wildly. It produces a very strange
illustration of the back of a duck, in flight or otherwise.
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Figure 3.14
f (x)

x

1

2

3

4

8 96 731 2 4 5 10 1211

To use a clamped spline to approximate this curve we would need derivative approxima-
tions for the endpoints. Even if these approximations were available, we could expect little
improvement because of the close agreement of the natural cubic spline to the curve of the
top profile. �

Constructing a cubic spline to approximate the lower profile of the ruddy duck would
be more difficult since the curve for this portion cannot be expressed as a function of x, and
at certain points the curve does not appear to be smooth. These problems can be resolved
by using separate splines to represent various portions of the curve, but a more effective
approach to approximating curves of this type is considered in the next section.

The clamped boundary conditions are generally preferred when approximating func-
tions by cubic splines, so the derivative of the function must be known or approximated
at the endpoints of the interval. When the nodes are equally spaced near both end-
points, approximations can be obtained by any of the appropriate formulas given in
Sections 4.1 and 4.2. When the nodes are unequally spaced, the problem is considerably
more difficult.

To conclude this section, we list an error-bound formula for the cubic spline with
clamped boundary conditions. The proof of this result can be found in [Schul], pp. 57–58.

Theorem 3.13 Let f ∈ C4[a, b] with maxa≤x≤b |f (4)(x)| = M. If S is the unique clamped cubic spline
interpolant to f with respect to the nodes a = x0 < x1 < · · · < xn = b, then for all x in
[a, b],

|f (x)− S(x)| ≤ 5M

384
max

0≤j≤n−1
(xj+1 − xj)

4.

A fourth-order error-bound result also holds in the case of natural boundary conditions,
but it is more difficult to express. (See [BD], pp. 827–835.)

The natural boundary conditions will generally give less accurate results than the
clamped conditions near the ends of the interval [x0, xn] unless the function f happens
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to nearly satisfy f ′′(x0) = f ′′(xn) = 0. An alternative to the natural boundary condition
that does not require knowledge of the derivative of f is the not-a-knot condition, (see
[Deb2], pp. 55–56). This condition requires that S′′′(x) be continuous at x1 and at xn−1.

E X E R C I S E S E T 3.5

1. Determine the natural cubic spline S that interpolates the data f (0) = 0, f (1) = 1, and f (2) = 2.

2. Determine the clamped cubic spline s that interpolates the data f (0) = 0, f (1) = 1, f (2) = 2 and
satisfies s′(0) = s′(2) = 1.

3. Construct the natural cubic spline for the following data.
a. x f (x)

8.3 17.56492
8.6 18.50515

b. x f (x)

0.8 0.22363362
1.0 0.65809197

c. x f (x)

−0.5 −0.0247500
−0.25 0.3349375

0 1.1010000

d. x f (x)

0.1 −0.62049958
0.2 −0.28398668
0.3 0.00660095
0.4 0.24842440

4. Construct the natural cubic spline for the following data.
a. x f (x)

0 1.00000
0.5 2.71828

b. x f (x)

−0.25 1.33203
0.25 0.800781

c. x f (x)

0.1 −0.29004996
0.2 −0.56079734
0.3 −0.81401972

d. x f (x)

−1 0.86199480
−0.5 0.95802009

0 1.0986123
0.5 1.2943767

5. The data in Exercise 3 were generated using the following functions. Use the cubic splines constructed
in Exercise 3 for the given value of x to approximate f (x) and f ′(x), and calculate the actual error.

a. f (x) = x ln x; approximate f (8.4) and f ′(8.4).

b. f (x) = sin(ex − 2); approximate f (0.9) and f ′(0.9).

c. f (x) = x3 + 4.001x2 + 4.002x + 1.101; approximate f (− 1
3 ) and f ′(− 1

3 ).

d. f (x) = x cos x − 2x2 + 3x − 1; approximate f (0.25) and f ′(0.25).

6. The data in Exercise 4 were generated using the following functions. Use the cubic splines constructed
in Exercise 4 for the given value of x to approximate f (x) and f ′(x), and calculate the actual error.

a. f (x) = e2x; approximate f (0.43) and f ′(0.43).

b. f (x) = x4 − x3 + x2 − x + 1; approximate f (0) and f ′(0).
c. f (x) = x2 cos x − 3x; approximate f (0.18) and f ′(0.18).

d. f (x) = ln(ex + 2); approximate f (0.25) and f ′(0.25).

7. Construct the clamped cubic spline using the data of Exercise 3 and the fact that

a. f ′(8.3) = 3.116256 and f ′(8.6) = 3.151762

b. f ′(0.8) = 2.1691753 and f ′(1.0) = 2.0466965

c. f ′(−0.5) = 0.7510000 and f ′(0) = 4.0020000

d. f ′(0.1) = 3.58502082 and f ′(0.4) = 2.16529366

8. Construct the clamped cubic spline using the data of Exercise 4 and the fact that

a. f ′(0) = 2 and f ′(0.5) = 5.43656

b. f ′(−0.25) = 0.437500 and f ′(0.25) = −0.625000
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c. f ′(0.1) = −2.8004996 and f ′(0) = −2.9734038

d. f ′(−1) = 0.15536240 and f ′(0.5) = 0.45186276

9. Repeat Exercise 5 using the clamped cubic splines constructed in Exercise 7.

10. Repeat Exercise 6 using the clamped cubic splines constructed in Exercise 8.

11. A natural cubic spline S on [0, 2] is defined by

S(x) =
{

S0(x) = 1+ 2x − x3, if 0 ≤ x < 1,

S1(x) = 2+ b(x − 1)+ c(x − 1)2 + d(x − 1)3, if 1 ≤ x ≤ 2.

Find b, c, and d.

12. A clamped cubic spline s for a function f is defined on [1, 3] by

s(x) =
{

s0(x) = 3(x − 1)+ 2(x − 1)2 − (x − 1)3, if 1 ≤ x < 2,

s1(x) = a+ b(x − 2)+ c(x − 2)2 + d(x − 2)3, if 2 ≤ x ≤ 3.

Given f ′(1) = f ′(3), find a, b, c, and d.

13. A natural cubic spline S is defined by

S(x) =
{

S0(x) = 1+ B(x − 1)− D(x − 1)3, if 1 ≤ x < 2,

S1(x) = 1+ b(x − 2)− 3
4 (x − 2)2 + d(x − 2)3, if 2 ≤ x ≤ 3.

If S interpolates the data (1, 1), (2, 1), and (3, 0), find B, D, b, and d.

14. A clamped cubic spline s for a function f is defined by

s(x) =
{

s0(x) = 1+ Bx + 2x2 − 2x3, if 0 ≤ x < 1,

s1(x) = 1+ b(x − 1)− 4(x − 1)2 + 7(x − 1)3, if 1 ≤ x ≤ 2.

Find f ′(0) and f ′(2).
15. Construct a natural cubic spline to approximate f (x) = cosπx by using the values given by f (x) at

x = 0, 0.25, 0.5, 0.75, and 1.0. Integrate the spline over [0, 1], and compare the result to
∫ 1

0 cosπx dx =
0. Use the derivatives of the spline to approximatef ′(0.5) and f ′′(0.5). Compare these approximations
to the actual values.

16. Construct a natural cubic spline to approximate f (x) = e−x by using the values given by f (x) at x = 0,
0.25, 0.75, and 1.0. Integrate the spline over [0, 1], and compare the result to

∫ 1
0 e−x dx = 1 − 1/e.

Use the derivatives of the spline to approximate f ′(0.5) and f ′′(0.5). Compare the approximations to
the actual values.

17. Repeat Exercise 15, constructing instead the clamped cubic spline with f ′(0) = f ′(1) = 0.

18. Repeat Exercise 16, constructing instead the clamped cubic spline with f ′(0) = −1, f ′(1) = −e−1.

19. Suppose that f (x) is a polynomial of degree 3. Show that f (x) is its own clamped cubic spline, but
that it cannot be its own natural cubic spline.

20. Suppose the data {xi, f (xi))}ni=1 lie on a straight line. What can be said about the natural and clamped
cubic splines for the function f ? [Hint: Take a cue from the results of Exercises 1 and 2.]

21. Given the partition x0 = 0, x1 = 0.05, and x2 = 0.1 of [0, 0.1], find the piecewise linear interpolating
function F for f (x) = e2x . Approximate

∫ 0.1
0 e2x dx with

∫ 0.1
0 F(x) dx, and compare the results to the

actual value.

22. Let f ∈ C2[a, b], and let the nodes a = x0 < x1 < · · · < xn = b be given. Derive an error estimate
similar to that in Theorem 3.13 for the piecewise linear interpolating function F. Use this estimate to
derive error bounds for Exercise 21.

23. Extend Algorithms 3.4 and 3.5 to include as output the first and second derivatives of the spline at the
nodes.

24. Extend Algorithms 3.4 and 3.5 to include as output the integral of the spline over the interval [x0, xn].
25. Given the partition x0 = 0, x1 = 0.05, x2 = 0.1 of [0, 0.1] and f (x) = e2x:

a. Find the cubic spline s with clamped boundary conditions that interpolates f .

b. Find an approximation for
∫ 0.1

0 e2x dx by evaluating
∫ 0.1

0 s(x) dx.
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c. Use Theorem 3.13 to estimate max0≤x≤0.1 |f (x)− s(x)| and∣∣∣∣
∫ 0.1

0
f (x) dx −

∫ 0.1

0
s(x) dx

∣∣∣∣ .

d. Determine the cubic spline S with natural boundary conditions, and compare S(0.02), s(0.02),
and e0.04 = 1.04081077.

26. Let f be defined on [a, b], and let the nodes a = x0 < x1 < x2 = b be given. A quadratic spline
interpolating function S consists of the quadratic polynomial

S0(x) = a0 + b0(x − x0)+ c0(x − x0)
2 on [x0, x1]

and the quadratic polynomial

S1(x) = a1 + b1(x − x1)+ c1(x − x1)
2 on [x1, x2],

such that

i. S(x0) = f (x0), S(x1) = f (x1), and S(x2) = f (x2),

ii. S ∈ C1[x0, x2].
Show that conditions (i) and (ii) lead to five equations in the six unknowns a0, b0, c0, a1, b1, and c1.
The problem is to decide what additional condition to impose to make the solution unique. Does the
condition S ∈ C2[x0, x2] lead to a meaningful solution?

27. Determine a quadratic spline s that interpolates the data f (0) = 0, f (1) = 1, f (2) = 2 and satisfies
s′(0) = 2.

28. a. The introduction to this chapter included a table listing the population of the United States from
1950 to 2000. Use natural cubic spline interpolation to approximate the population in the years
1940, 1975, and 2020.

b. The population in 1940 was approximately 132,165,000. How accurate do you think your 1975
and 2020 figures are?

29. A car traveling along a straight road is clocked at a number of points. The data from the observations
are given in the following table, where the time is in seconds, the distance is in feet, and the speed is
in feet per second.

Time 0 3 5 8 13

Distance 0 225 383 623 993

Speed 75 77 80 74 72

a. Use a clamped cubic spline to predict the position of the car and its speed when t = 10 s.

b. Use the derivative of the spline to determine whether the car ever exceeds a 55-mi/h speed limit
on the road; if so, what is the first time the car exceeds this speed?

c. What is the predicted maximum speed for the car?

30. The 2009 Kentucky Derby was won by a horse named Mine That Bird (at more than 50:1 odds)
in a time of 2:02.66 (2 minutes and 2.66 seconds) for the 1 1

4 -mile race. Times at the quarter-mile,
half-mile, and mile poles were 0:22.98, 0:47.23, and 1:37.49.

a. Use these values together with the starting time to construct a natural cubic spline for Mine That
Bird’s race.

b. Use the spline to predict the time at the three-quarter-mile pole, and compare this to the actual
time of 1:12.09.

c. Use the spline to approximate Mine That Bird’s starting speed and speed at the finish line.

31. It is suspected that the high amounts of tannin in mature oak leaves inhibit the growth of the winter
moth (Operophtera bromata L., Geometridae) larvae that extensively damage these trees in certain
years. The following table lists the average weight of two samples of larvae at times in the first 28 days
after birth. The first sample was reared on young oak leaves, whereas the second sample was reared
on mature leaves from the same tree.

a. Use a natural cubic spline to approximate the average weight curve for each sample.
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b. Find an approximate maximum average weight for each sample by determining the maximum
of the spline.

Day 0 6 10 13 17 20 28

Sample 1 average weight (mg) 6.67 17.33 42.67 37.33 30.10 29.31 28.74

Sample 2 average weight (mg) 6.67 16.11 18.89 15.00 10.56 9.44 8.89

32. The upper portion of this noble beast is to be approximated using clamped cubic spline interpolants.
The curve is drawn on a grid from which the table is constructed. Use Algorithm 3.5 to construct the
three clamped cubic splines.

x5 10 15 20 25 30

8
7
6
5
4
3
2
1

Slope 3 Slope �4f (x) Slope �

Slope

Slope �

Slope 1

Curve 1 Curve 2 Curve 3 3
2

2
3

1
3

Curve 1 Curve 2 Curve 3

i xi f (xi) f ′(xi) i xi f (xi) f ′(xi) i xi f (xi) f ′(xi)

0 1 3.0 1.0 0 17 4.5 3.0 0 27.7 4.1 0.33
1 2 3.7 1 20 7.0 1 28 4.3
2 5 3.9 2 23 6.1 2 29 4.1
3 6 4.2 3 24 5.6 3 30 3.0 −1.5
4 7 5.7 4 25 5.8
5 8 6.6 5 27 5.2
6 10 7.1 6 27.7 4.1 −4.0
7 13 6.7
8 17 4.5 −0.67

33. Repeat Exercise 32, constructing three natural splines using Algorithm 3.4.

3.6 Parametric Curves

None of the techniques developed in this chapter can be used to generate curves of the form
shown in Figure 3.15 because this curve cannot be expressed as a function of one coordinate
variable in terms of the other. In this section we will see how to represent general curves
by using a parameter to express both the x- and y-coordinate variables. Any good book
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on computer graphics will show how this technique can be extended to represent general
curves and surfaces in space. (See, for example, [FVFH].)

Figure 3.15
y

x1

1

�1

�1

A straightforward parametric technique for determining a polynomial or piecewise
polynomial to connect the points (x0, y0), (x1, y1), . . ., (xn, yn) in the order given is to use
a parameter t on an interval [t0, tn], with t0 < t1 < · · · < tn, and construct approximation
functions with

xi = x(ti) and yi = y(ti), for each i = 0, 1, . . . , n.

The following example demonstrates the technique in the case where both approximat-
ing functions are Lagrange interpolating polynomials.

Example 1 Construct a pair of Lagrange polynomials to approximate the curve shown in Figure 3.15,
using the data points shown on the curve.

Solution There is flexibility in choosing the parameter, and we will choose the points
{ti}4i=0 equally spaced in [0,1], which gives the data in Table 3.20.

Table 3.20 i 0 1 2 3 4

ti 0 0.25 0.5 0.75 1
xi −1 0 1 0 1
yi 0 1 0.5 0 −1

This produces the interpolating polynomials

x(t) = (((64t − 352
3

)
t + 60

)
t − 14

3

)
t−1 and y(t) = (((− 64

3 t + 48
)

t − 116
3

)
t + 11

)
t.

Plotting this parametric system produces the graph shown in blue in Figure 3.16. Although
it passes through the required points and has the same basic shape, it is quite a crude ap-
proximation to the original curve. A more accurate approximation would require additional
nodes, with the accompanying increase in computation.
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Figure 3.16
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(x(t), y(t))

Parametric Hermite and spline curves can be generated in a similar manner, but these
also require extensive computational effort.

Applications in computer graphics require the rapid generation of smooth curves that
can be easily and quickly modified. For both aesthetic and computational reasons, changing
one portion of these curves should have little or no effect on other portions of the curves.
This eliminates the use of interpolating polynomials and splines since changing one portion
of these curves affects the whole curve.

The choice of curve for use in computer graphics is generally a form of the piece-
wise cubic Hermite polynomial. Each portion of a cubic Hermite polynomial is completely
determined by specifying its endpoints and the derivatives at these endpoints. As a conse-
quence, one portion of the curve can be changed while leaving most of the curve the same.
Only the adjacent portions need to be modified to ensure smoothness at the endpoints. The
computations can be performed quickly, and the curve can be modified a section at a time.

A successful computer design
system needs to be based on a
formal mathematical theory so
that the results are predictable,
but this theory should be
performed in the background so
that the artist can base the design
on aesthetics.

The problem with Hermite interpolation is the need to specify the derivatives at
the endpoints of each section of the curve. Suppose the curve has n + 1 data points
(x(t0), y(t0)), . . . , (x(tn), y(tn)), and we wish to parameterize the cubic to allow complex
features. Then we must specify x′(ti) and y′(ti), for each i = 0, 1, . . . , n. This is not as
difficult as it would first appear, since each portion is generated independently. We must
ensure only that the derivatives at the endpoints of each portion match those in the adjacent
portion. Essentially, then, we can simplify the process to one of determining a pair of cubic
Hermite polynomials in the parameter t, where t0 = 0 and t1 = 1, given the endpoint data
(x(0), y(0)) and (x(1), y(1)) and the derivatives dy/dx (at t = 0) and dy/dx (at t = 1).

Notice, however, that we are specifying only six conditions, and the cubic polynomials
in x(t) and y(t) each have four parameters, for a total of eight. This provides flexibility
in choosing the pair of cubic Hermite polynomials to satisfy the conditions, because the
natural form for determining x(t) and y(t) requires that we specify x′(0), x′(1), y′(0), and
y′(1). The explicit Hermite curve in x and y requires specifying only the quotients

dy

dx
(t = 0) = y′(0)

x′(0)
and

dy

dx
(t = 1) = y′(1)

x′(1)
.

By multiplying x′(0) and y′(0) by a common scaling factor, the tangent line to the curve
at (x(0), y(0)) remains the same, but the shape of the curve varies. The larger the scaling
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factor, the closer the curve comes to approximating the tangent line near (x(0), y(0)). A
similar situation exists at the other endpoint (x(1), y(1)).

To further simplify the process in interactive computer graphics, the derivative at an
endpoint is specified by using a second point, called a guidepoint, on the desired tangent
line. The farther the guidepoint is from the node, the more closely the curve approximates
the tangent line near the node.

In Figure 3.17, the nodes occur at (x0, y0) and (x1, y1), the guidepoint for (x0, y0) is
(x0 + α0, y0 + β0), and the guidepoint for (x1, y1) is (x1 − α1, y1 − β1). The cubic Hermite
polynomial x(t) on [0, 1] satisfies

x(0) = x0, x(1) = x1, x′(0) = α0, and x′(1) = α1.

Figure 3.17

x

y

(x0, y0)

(x1, y1)

(x0 � α0, y0 � β0)

(x1 � α1, y1 � β1)

The unique cubic polynomial satisfying these conditions is

x(t) = [2(x0 − x1)+ (α0 + α1)]t3 + [3(x1 − x0)− (α1 + 2α0)]t2 + α0t + x0. (3.23)

In a similar manner, the unique cubic polynomial satisfying

y(0) = y0, y(1) = y1, y′(0) = β0, and y′(1) = β1

is

y(t) = [2(y0 − y1)+ (β0 + β1)]t3 + [3(y1 − y0)− (β1 + 2β0)]t2 + β0t + y0. (3.24)

Example 2 Determine the graph of the parametric curve generated Eq. (3.23) and (3.24) when the end
points are (x0, y0) = (0, 0) and (x1, y1) = (1, 0), and respective guide points, as shown in
Figure 3.18 are (1, 1) and (0, 1).

Solution The endpoint information implies that x0 = 0, x1 = 1, y0 = 0, and y1 = 0, and
the guide points at (1, 1) and (0, 1) imply that α0 = 1, α1 = 1, β0 = 1, and β1 = −1. Note
that the slopes of the guide lines at (0, 0) and (1, 0) are, respectively

β0

α0
= 1

1
= 1 and

β1

α1
= −1

1
= −1.

Equations (3.23) and (3.24) imply that for t ∈ [0, 1] we have

x(t) = [2(0− 1)+ (1+ 1)]t3 + [3(0− 0)− (1+ 2 · 1)]t2 + 1 · t + 0 = t

y

x

(1, 1)

(1, 1)(0, 0)

(0, 1)

Nodes

Guidepoints

Figure 3.18
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and

y(t) = [2(0− 0)+ (1+ (−1))]t3 + [3(0− 0)− (−1+ 2 · 1)]t2 + 1 · t + 0 = −t2 + t.

This graph is shown as (a) in Figure 3.19, together with some other possibilities of curves
produced by Eqs. (3.23) and (3.24) when the nodes are (0, 0) and (1, 0) and the slopes at
these nodes are 1 and −1, respectively.

Figure 3.19
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The standard procedure for determining curves in an interactive graphics mode is to first
use a mouse or touchpad to set the nodes and guidepoints to generate a first approximation
to the curve. These can be set manually, but most graphics systems permit you to use your
input device to draw the curve on the screen freehand and will select appropriate nodes and
guidepoints for your freehand curve.

The nodes and guidepoints can then be manipulated into a position that produces an
aesthetically pleasing curve. Since the computation is minimal, the curve can be determined
so quickly that the resulting change is seen immediately. Moreover, all the data needed to
compute the curves are imbedded in the coordinates of the nodes and guidepoints, so no
analytical knowledge is required of the user.

Pierre Etienne Bézier
(1910–1999) was head of design
and production for Renault
motorcars for most of his
professional life. He began his
research into computer-aided
design and manufacturing in
1960, developing interactive tools
for curve and surface design, and
initiated computer-generated
milling for automobile modeling.

The Bézier curves that bear his
name have the advantage of being
based on a rigorous mathematical
theory that does not need to be
explicitly recognized by the
practitioner who simply wants to
make an aesthetically pleasing
curve or surface. These are the
curves that are the basis of the
powerful Adobe Postscript
system, and produce the freehand
curves that are generated in most
sufficiently powerful computer
graphics packages.

Popular graphics programs use this type of system for their freehand graphic representa-
tions in a slightly modified form. The Hermite cubics are described as Bézier polynomials,
which incorporate a scaling factor of 3 when computing the derivatives at the endpoints.
This modifies the parametric equations to

x(t) = [2(x0 − x1)+ 3(α0 + α1)]t3 + [3(x1 − x0)− 3(α1 + 2α0)]t2 + 3α0t + x0, (3.25)

and

y(t) = [2(y0 − y1)+ 3(β0 + β1)]t3 + [3(y1 − y0)− 3(β1 + 2β0)]t2 + 3β0t + y0, (3.26)

for 0 ≤ t ≤ 1, but this change is transparent to the user of the system.
Algorithm 3.6 constructs a set of Bézier curves based on the parametric equations in

Eqs. (3.25) and (3.26).

ALGORITHM

3.6
Bézier Curve

To construct the cubic Bézier curves C0, . . . , Cn−1 in parametric form, where Ci is repre-
sented by

(xi(t), yi(t)) = (a(i)0 + a(i)1 t + a(i)2 t2 + a(i)3 t3, b(i)0 + b(i)1 t + b(i)2 t2 + b(i)3 t3),

for 0 ≤ t ≤ 1, as determined by the left endpoint (xi, yi), left guidepoint (x+i , y+i ), right
endpoint (xi+1, yi+1), and right guidepoint (x−i+1, y−i+1) for each i = 0, 1, . . . , n− 1:

INPUT n; (x0, y0), . . . , (xn, yn); (x
+
0 , y+0 ), . . . , (x

+
n−1, y+n−1); (x

−
1 , y−1 ), . . . , (x

−
n , y−n ).

OUTPUT coefficients {a(i)0 , a(i)1 , a(i)2 , a(i)3 , b(i)0 , b(i)1 , b(i)2 , b(i)3 , for 0 ≤ i ≤ n− 1}.
Step 1 For each i = 0, 1, . . . , n− 1 do Steps 2 and 3.

Step 2 Set a(i)0 = xi;

b(i)0 = yi;

a(i)1 = 3(x+i − xi);

b(i)1 = 3(y+i − yi);

a(i)2 = 3(xi + x−i+1 − 2x+i );

b(i)2 = 3(yi + y−i+1 − 2y+i );

a(i)3 = xi+1 − xi + 3x+i − 3x−i+1;

b(i)3 = yi+1 − yi + 3y+i − 3y−i+1;

Step 3 OUTPUT (a(i)0 , a(i)1 , a(i)2 , a(i)3 , b(i)0 , b(i)1 , b(i)2 , b(i)3 ).

Step 4 STOP.
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Three-dimensional curves are generated in a similar manner by additionally specifying
third components z0 and z1 for the nodes and z0+γ0 and z1−γ1 for the guidepoints. The more
difficult problem involving the representation of three-dimensional curves concerns the loss
of the third dimension when the curve is projected onto a two-dimensional computer screen.
Various projection techniques are used, but this topic lies within the realm of computer
graphics. For an introduction to this topic and ways that the technique can be modified for
surface representations, see one of the many books on computer graphics methods, such as
[FVFH].

E X E R C I S E S E T 3.6

1. Let (x0, y0) = (0, 0) and (x1, y1) = (5, 2) be the endpoints of a curve. Use the given guide-
points to construct parametric cubic Hermite approximations (x(t), y(t)) to the curve, and graph the
approximations.
a. (1, 1) and (6, 1)

b. (0.5, 0.5) and (5.5, 1.5)

c. (1, 1) and (6, 3)

d. (2, 2) and (7, 0)

2. Repeat Exercise 1 using cubic Bézier polynomials.

3. Construct and graph the cubic Bézier polynomials given the following points and guidepoints.

a. Point (1, 1) with guidepoint (1.5, 1.25) to point (6, 2) with guidepoint (7, 3)

b. Point (1, 1) with guidepoint (1.25, 1.5) to point (6, 2) with guidepoint (5, 3)

c. Point (0, 0)with guidepoint (0.5, 0.5) to point (4, 6)with entering guidepoint (3.5, 7) and exiting
guidepoint (4.5, 5) to point (6, 1) with guidepoint (7, 2)

d. Point (0, 0) with guidepoint (0.5, 0.5) to point (2, 1) with entering guidepoint (3, 1) and exiting
guidepoint (3, 1) to point (4, 0) with entering guidepoint (5, 1) and exiting guidepoint (3,−1)
to point (6,−1) with guidepoint (6.5,−0.25)

4. Use the data in the following table and Algorithm 3.6 to approximate the shape of the letter N .

i xi yi αi βi α′i β ′i

0 3 6 3.3 6.5
1 2 2 2.8 3.0 2.5 2.5
2 6 6 5.8 5.0 5.0 5.8
3 5 2 5.5 2.2 4.5 2.5
4 6.5 3 6.4 2.8

5. Suppose a cubic Bézier polynomial is placed through (u0, v0) and (u3, v3) with guidepoints (u1, v1)

and (u2, v2), respectively.

a. Derive the parametric equations for u(t) and v(t) assuming that

u(0) = u0, u(1) = u3, u′(0) = u1 − u0, u′(1) = u3 − u2

and

v(0) = v0, v(1) = v3, v′(0) = v1 − v0, v′(1) = v3 − v2.

b. Let f (i/3) = ui, for i = 0, 1, 2, 3 and g(i/3) = vi, for i = 0, 1, 2, 3. Show that the Bernstein
polynomial of degree 3 in t for f is u(t) and the Bernstein polynomial of degree three in t for g
is v(t). (See Exercise 23 of Section 3.1.)
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3.7 Survey of Methods and Software

In this chapter we have considered approximating a function using polynomials and piece-
wise polynomials. The function can be specified by a given defining equation or by pro-
viding points in the plane through which the graph of the function passes. A set of nodes
x0, x1, . . . , xn is given in each case, and more information, such as the value of various
derivatives, may also be required. We need to find an approximating function that satisfies
the conditions specified by these data.

The interpolating polynomial P(x) is the polynomial of least degree that satisfies, for
a function f ,

P(xi) = f (xi), for each i = 0, 1, . . . , n.

Although this interpolating polynomial is unique, it can take many different forms. The
Lagrange form is most often used for interpolating tables when n is small and for deriving
formulas for approximating derivatives and integrals. Neville’s method is used for eval-
uating several interpolating polynomials at the same value of x. Newton’s forms of the
polynomial are more appropriate for computation and are also used extensively for deriv-
ing formulas for solving differential equations. However, polynomial interpolation has the
inherent weaknesses of oscillation, particularly if the number of nodes is large. In this case
there are other methods that can be better applied.

The Hermite polynomials interpolate a function and its derivative at the nodes. They
can be very accurate but require more information about the function being approximated.
When there are a large number of nodes, the Hermite polynomials also exhibit oscillation
weaknesses.

The most commonly used form of interpolation is piecewise-polynomial interpolation.
If function and derivative values are available, piecewise cubic Hermite interpolation is
recommended. This is the preferred method for interpolating values of a function that is
the solution to a differential equation. When only the function values are available, natural
cubic spline interpolation can be used. This spline forces the second derivative of the spline
to be zero at the endpoints. Other cubic splines require additional data. For example, the
clamped cubic spline needs values of the derivative of the function at the endpoints of the
interval.

Other methods of interpolation are commonly used. Trigonometric interpolation, in
particular the Fast Fourier Transform discussed in Chapter 8, is used with large amounts
of data when the function is assumed to have a periodic nature. Interpolation by rational
functions is also used.

If the data are suspected to be inaccurate, smoothing techniques can be applied, and
some form of least squares fit of data is recommended. Polynomials, trigonometric functions,
rational functions, and splines can be used in least squares fitting of data. We consider these
topics in Chapter 8.

Interpolation routines included in the IMSL Library are based on the book A Practical
Guide to Splines by Carl de Boor [Deb] and use interpolation by cubic splines. There
are cubic splines to minimize oscillations and to preserve concavity. Methods for two-
dimensional interpolation by bicubic splines are also included.

The NAG library contains subroutines for polynomial and Hermite interpolation, for
cubic spline interpolation, and for piecewise cubic Hermite interpolation. NAG also contains
subroutines for interpolating functions of two variables.

The netlib library contains the subroutines to compute the cubic spline with various
endpoint conditions. One package produces the Newton’s divided difference coefficients for

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



172 C H A P T E R 3 Interpolation and Polynomial Approximation

a discrete set of data points, and there are various routines for evaluating Hermite piecewise
polynomials.

MATLAB can be used to interpolate a discrete set of data points, using either nearest
neighbor interpolation, linear interpolation, cubic spline interpolation, or cubic interpola-
tion. Cubic splines can also be produced.

General references to the methods in this chapter are the books by Powell [Pow] and
by Davis [Da]. The seminal paper on splines is due to Schoenberg [Scho]. Important books
on splines are by Schultz [Schul], De Boor [Deb2], Dierckx [Di], and Schumaker [Schum].
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